
GCC(1) GNU GCC(1)

NAME
gcc − GNU project C and C++ compiler

SYNOPSIS
gcc [−c −S −E] [−std=standard]

[−g] [−pg] [−Olevel]
[−Wwarn...] [−pedantic]
[−Idir...] [−Ldir...]
[−Dmacro[=defn]...] [−Umacro]
[−foption...] [−mmachine-option...]
[−o outfile] infile...

Only the most useful options are listed here; see below for the remainder. g++ accepts mostly the same
options asgcc.

DESCRIPTION
When you invoke GCC, it normally does preprocessing, compilation, assembly and linking. The ‘‘overall
options’’ allow you to stop this process at an intermediate stage.For example, the−c option says not to run
the linker. Then the output consists of object files output by the assembler.

Other options are passed on to one stage of processing.Some options control the preprocessor and others
the compiler itself.Yet other options control the assembler and linker; most of these are not documented
here, since you rarely need to use any of them.

Most of the command line options that you can use withGCCare useful for C programs; when an option is
only useful with another language (usually C++), the explanation says so explicitly. If the description for a
particular option does not mention a source language, you can use that option with all supported languages.

Thegccprogram accepts options and file names as operands.Many options have multi-letter names; there-
fore multiple single-letter options maynotbe grouped:−dr is very different from−d −r.

You can mix options and other arguments. For the most part, the order you use doesn’t matter. Order does
matter when you use several options of the same kind; for example, if you specify−L more than once, the
directories are searched in the order specified.

Many options have long names starting with−f or with −W−−−for example, −fforce−mem,
−fstrength−reduce, −Wformat and so on. Most of these have both positive and negative forms; the neg-
ative form of −ffoo would be−fno−foo. This manual documents only one of these two forms, whichever
one is not the default.

OPTIONS
Option Summary

Here is a summary of all the options, grouped by type. Explanations are in the following sections.

Overall Options
−c −S −E −ofile −combine −pipe −pass−exit−codes −xlanguage −v −### −−help −−tar-
get−help −−version

C Language Options
−ansi −std=standard −aux−info filename−fno−asm −fno−builtin −fno−builtin− function−fhosted
−ffr eestanding −fms−extensions −trigraphs −no−integrated−cpp −traditional −tradi-
tional−cpp −fallow−single−precision −fcond−mismatch −fsigned−bitfields −fsigned−char−fun-
signed−bitfields −funsigned−char

C++ Language Options
−fabi−version=n −fno−access−control −fcheck−new −fconserve−space −fno−const−strings
−fno−elide−constructors −fno−enforce−eh−specs −ffor−scope −fno−for−scope −fno−gnu−key-
words −fno−implicit−templates −fno−implicit−inline−templates −fno−implement−inlines
−fms−extensions −fno−nonansi−builtins −fno−operator−names−fno−optional−diags −fpermis-
sive −fr epo −fno−rtti −fstats −ftemplate−depth−n −fno−threadsafe−statics −fuse−cxa−atexit
−fno−weak −nostdinc++ −fno−default−inline −fvisibility−inlines−hidden −Wabi

gcc-4.0.3 2006-04-20 1

GCC(1) GNU GCC(1)

−Wctor−dtor−pri vacy −Wnon−virtual−dtor −Wreorder −Weffc++ −Wno−deprecated
−Wstrict−null−sentinel −Wno−non−template−friend −Wold−style−cast −Woverloaded−virtual
−Wno−pmf−conversions −Wsign−promo

Objective-C and Objective−C++ Language Options
−fconstant−string−class=class-name −fgnu−runtime −fnext−runtime −fno−nil−receivers
−fobjc−exceptions −freplace−objc−classes −fzero−link −gen−decls −Wno−protocol −Wselector
−Wundeclared−selector

Language Independent Options
−fmessage−length=n −fdiagnostics−show−location=[once ev ery-line]

Warning Options
−fsyntax−only −pedantic −pedantic−errors −w −Wextra −Wall −Waggregate−return
−Wcast−align −Wcast−qual −Wchar−subscripts −Wcomment−Wconversion −Wno−depre-
cated−declarations −Wdisabled−optimization −Wno−div−by−zero −Wno−endif−labels −Wer-
ror −Werr or−implicit−function−declaration −Wfatal−err ors −Wfloat−equal −Wformat
−Wformat=2 −Wno−format−extra−args −Wformat−nonliteral −Wf ormat−security −Wfor-
mat−y2k −Wimplicit −Wimplicit−function−declaration −W implicit−int −W import
−Wno−import −Winit−self −W inline −Wno−invalid−offsetof −Winvalid−pch
−Wlarger−than−len −Wlong−long −Wmain −Wmissing−braces −Wmissing−field−initializers
−Wmissing−format−attrib ute −Wmissing−include−dirs−Wmissing−noreturn −Wno−multichar
−Wnonnull −Wpacked −Wpadded −Wparentheses −Wpointer−arith −Wredundant−decls
−Wretur n−type −Wsequence−point −Wshadow −Wsign−compare −Wstrict−aliasing
−Wstrict−aliasing=2 −Wswitch −Wswitch−default −Wswitch−enum −Wsystem−headers
−Wtrigraphs −Wundef −Wuninitialized −Wunknown−pragmas −Wunreachable−code
−Wunused −Wunused−function −Wunused−label −Wunused−parameter −Wunused−value
−Wunused−variable −Wwrite−strings −Wvariadic−macros

C−only Warning Options
−Wbad−function−cast −Wmissing−declarations −Wmissing−prototypes −Wnested−externs
−Wold−style−definition −Wstrict−prototypes −Wtraditional −Wdeclaration−after−statement
−Wno−pointer−sign

Debugging Options
−dletters −dumpspecs −dumpmachine −dumpversion −fdump−unnumbered −fdump−transla-
tion−unit [−n] −fdump−class−hierarchy[−n] −fdump−ipa−all −fdump−ipa−cgraph
−fdump−tr ee−all −fdump−tree−original[−n] −fdump−tree−optimized[−n]
−fdump−tree−inlined[−n] −fdump−tr ee−cfg −fdump−tree−vcg −fdump−tree−alias
−fdump−tr ee−ch −fdump−tree−ssa[−n] −fdump−tree−pre[−n] −fdump−tree−ccp[−n]
−fdump−tree−dce[−n] −fdump−tree−gimple[−raw] −fdump−tree−mudflap[−n]
−fdump−tree−dom[−n] −fdump−tree−dse[−n] −fdump−tree−phiopt[−n] −fdump−tree−forw-
prop[−n] −fdump−tree−copyrename[−n] −fdump−tree−nrv −fdump−tree−vect
−fdump−tree−sra[−n] −fdump−tree−fre[−n] −ftree−vectorizer−verbose=n −felimi-
nate−dwarf2−dups −feliminate−unused−debug−types −feliminate−unused−debug−symbols
−fmem−report −fprofile−arcs −ftree−based−profiling −frandom−seed=string −fsched−verbose=n
−ftest−coverage −ftime−report −fvar−tracking −g −glevel −gcoff −gdwarf−2 −ggdb −gstabs
−gstabs+ −gvms −gxcoff −gxcoff+−p −pg −print−file−name=library −print−libgcc−file−name
−print−multi−dir ectory −print−multi−lib −print−prog−name=program −print−search−dirs −Q
−save−temps −time

Optimization Options
−falign−functions=n −falign−jumps=n −falign−labels=n −falign−loops=n −fbounds−check
−fmudflap −fmudflapth −fmudflapir −fbranch−probabilities −fpr ofile−values −fvpt
−fbranch−target−load−optimize −fbranch−target−load−optimize2 −fbtr−bb−exclusive
−fcaller−saves −fcprop−registers −fcse−follow−jumps −fcse−skip−blocks −fcx−limited−range
−fdata−sections −fdelayed−branch −fdelete−null−pointer−checks −fexpensive−optimizations
−ffast−math −ffloat−store −ffor ce−addr −fforce−mem −ffunction−sections −fgcse −fgcse−lm

gcc-4.0.3 2006-04-20 2

GCC(1) GNU GCC(1)

−fgcse−sm −fgcse−las −fgcse−after−reload −floop−optimize −fcrossjumping −fif−conversion
−fif−conversion2 −finline−functions −finline−functions−called−once −finline−limit=n
−fkeep−inline−functions −fkeep−static−consts −fmerge−constants −fmerge−all−constants
−fmodulo−sched −fno−branch−count−reg −fno−default−inline −fno−defer−pop −floop−opti-
mize2 −fmove−loop−invariants −fno−function−cse −fno−guess−branch−probability −fno−inline
−fno−math−errno −fno−peephole −fno−peephole2 −funsafe−math−optimizations −ffi-
nite−math−only −fno−trapping−math −fno−zero−initialized−in−bss −fomit−frame−pointer
−foptimize−register−move −foptimize−sibling−calls −fprefetch−loop−arrays −fprofile−generate
−fprofile−use −fregmove −frename−registers −freorder−blocks −freorder−blocks−and−parti-
tion −freorder−functions −fr erun−cse−after−loop −frerun−loop−opt −frounding−math −fsched-
ule−insns −fschedule−insns2−fno−sched−interblock −fno−sched−spec −fsched−spec−load
−fsched−spec−load−dangerous −fsched−stalled−insns=n −sched−stalled−insns−dep=n
−fsched2−use−superblocks −fsched2−use−traces −freschedule−modulo−scheduled−loops −fsig-
naling−nans −fsingle−precision−constant −fspeculative−prefetching −fstrength−reduce
−fstrict−aliasing −ftracer −fthr ead−jumps −funroll−all−loops −funroll−loops −fpeel−loops
−fsplit−ivs−in−unr oller −funswitch−loops −fvariable−expansion−in−unroller −ftr ee−pre
−ftr ee−ccp −ftree−dce −ftree−loop−optimize −ftree−loop−linear −ftree−loop−im
−ftree−loop−ivcanon −fivopts −ftree−dominator−opts −ftree−dse −ftree−copyrename −ftree−ch
−ftr ee−sra −ftree−ter −ftree−lrs −ftree−fre −ftree−vectorize −fweb −−param name=value −O
−O0 −O1 −O2 −O3 −Os

Preprocessor Options
−Aquestion=answer −A−question[=answer] −C −dD −dI −dM −dN −Dmacro[=defn] −E −H
−idirafter dir −include file −imacros file −iprefix file −iwithprefix dir −iwithprefixbefore dir
−isystem dir −M −MM −MF −MG −MP −MQ −MT −nostdinc −P −fworking−directory
−remap −trigraphs −undef −Umacro −Wp,option−Xpreprocessoroption

Assembler Option
−Wa,option −Xassembleroption

Linker Options
object-file-name−llibrary −nostartfiles −nodefaultlibs −nostdlib−pie −s −static −static−libgcc
−shared −shared−libgcc −symbolic−Wl,option −Xlinker option−u symbol

Directory Options
−Bprefix −Idir −iquotedir −Ldir −specs=file −I−

Targ et Options
−V version −b machine

Machine Dependent Options
ARC Options −EB −EL −mmangle−cpu −mcpu=cpu −mtext=text-section−mdata=data-section
−mrodata=readonly-data-section

ARM Options −mapcs−frame −mno−apcs−frame −mabi=name −mapcs−stack−check
−mno−apcs−stack−check −mapcs−float−mno−apcs−float −mapcs−reentrant −mno−apcs−reen-
trant −msched−prolog −mno−sched−prolog −mlittle−endian −mbig−endian −mwords−lit-
tle−endian −mfloat−abi=name −msoft−float −mhard−float −mfpe −mthumb−interwork
−mno−thumb−interwork −mcpu=name −march=name −mfpu=name−mstructure−size−bound-
ary=n −mabort−on−noreturn −mlong−calls −mno−long−calls −msingle−pic−base −mno−sin-
gle−pic−base −mpic−register=reg −mnop−fun−dllimport −mcirrus−fix−in valid−insns −mno−cir-
rus−fix−invalid−insns −mpoke−function−name −mthumb −marm −mtpcs−frame
−mtpcs−leaf−frame −mcaller−super−interworking −mcallee−super−interworking

AVR Options −mmcu=mcu −msize −minit−stack=n −mno−interrupts −mcall−prologues
−mno−tablejump −mtiny−stack −mint8

Blackfin Options −momit−leaf−frame−pointer −mno−omit−leaf−frame−pointer
−mspecld−anomaly −mno−specld−anomaly −mcsync−anomaly −mno−csync−anomaly
−mlow−64k −mno−low64k −mid−shared−library −mno−id−shared−library

gcc-4.0.3 2006-04-20 3

GCC(1) GNU GCC(1)

−mshared−library−id=n −mlong−calls −mno−long−calls

CRIS Options−mcpu=cpu −march=cpu −mtune=cpu −mmax−stack−frame=n −melinux−stack-
size=n −metrax4 −metrax100 −mpdebug −mcc−init −mno−side−effects−mstack−align
−mdata−align −mconst−align −m32−bit −m16−bit −m8−bit −mno−prologue−epilogue
−mno−gotplt −melf −maout −melinux −mlinux −sim −sim2 −mmul−bug−workaround
−mno−mul−bug−workaround

Darwin Options −all_load −allowable_client −arch −arch_errors_fatal −arch_only
−bind_at_load −bundle −bundle_loader −client_name −compatibility_version −current_ver-
sion −dead_strip −dependency−file−dylib_file −dylink er_install_name −dynamic −dynamiclib
−exported_symbols_list −filelist −flat_namespace −force_cpusubtype_ALL −force_flat_names-
pace −headerpad_max_install_names −image_base −init −install_name −keep_pri-
vate_externs −multi_module −multiply_defined −multiply_defined_unused −noall_load
−no_dead_strip_inits_and_terms −nofixprebinding −nomultidefs −noprebind −noseglinkedit
−pagezero_size −prebind −prebind_all_twolevel_modules −private_bundle −read_only_relocs
−sectalign −sectobjectsymbols−whyload −seg1addr −sectcreate −sectobjectsymbols −sec-
torder −segaddr −segs_read_only_addr −segs_read_write_addr −seg_addr_table−seg_addr_ta-
ble_filename −seglinkedit −segprot −segs_read_only_addr −segs_read_write_addr −sin-
gle_module −static −sub_library −sub_umbrella −twolevel_namespace −umbrella −undefined
−unexported_symbols_list −weak_reference_mismatches −whatsloaded −F −gused −gfull
−mone−byte−bool

DEC Alpha Options −mno−fp−regs −msoft−float −malpha−as −mgas −mieee
−mieee−with−inexact −mieee−conformant −mfp−trap−mode=mode −mfp−round-
ing−mode=mode −mtrap−precision=mode −mbuild−constants −mcpu=cpu-type −mtune=cpu-
type−mbwx −mmax −mfix −mcix −mfloat−vax −mfloat−ieee−mexplicit−relocs −msmall−data
−mlarge−data −msmall−text −mlarge−text −mmemory−latency=time

DEC Alpha/VMS Options−mvms−return−codes

FRV Options −mgpr−32 −mgpr−64 −mfpr−32 −mfpr−64 −mhard−float −msoft−float −mal-
loc−cc −mfixed−cc −mdword −mno−dword −mdouble −mno−double −mmedia −mno−media
−mmuladd −mno−muladd −mfdpic −minline−plt −mgprel−ro −multilib−library−pic
−mlink ed−fp −mlong−calls −malign−labels −mlibrary−pic −macc−4 −macc−8−mpack
−mno−pack −mno−eflags −mcond−move −mno−cond−move −mscc −mno−scc −mcond−exec
−mno−cond−exec −mvliw−branch −mno−vliw−branch −mmulti−cond−exec
−mno−multi−cond−exec −mnested−cond−exec −mno−nested−cond−exec −mtomcat−stats
−mTLS −mtls −mcpu=cpu

H8/300 Options−mrelax −mh −ms −mn −mint32 −malign−300

HPPA Options −march=architecture-type−mbig−switch −mdisable−fpregs −mdisable−indexing
−mfast−indirect−calls −mgas −mgnu−ld −mhp−ld −mfixed−range=register-range
−mjump−in−delay −mlinker−opt −mlong−calls −mlong−load−store −mno−big−switch
−mno−disable−fpregs −mno−disable−indexing −mno−fast−indirect−calls −mno−gas
−mno−jump−in−delay −mno−long−load−store −mno−portable−runtime −mno−soft−float
−mno−space−regs −msoft−float −mpa−risc−1−0 −mpa−risc−1−1 −mpa−risc−2−0
−mportable−runtime −mschedule=cpu-type −mspace−regs −msio −mwsio−munix=unix-std
−nolibdld −static −threads

i386 and x86−64 Options−mtune=cpu-type −march=cpu-type−mfpmath=unit −masm=dialect
−mno−fancy−math−387 −mno−fp−ret−in−387 −msoft−float −msvr3−shlib−mno−wide−multi-
ply −mrtd −malign−double −mpreferred−stack−boundary=num −mmmx −msse −msse2
−msse3 −m3dnow −mthr eads −mno−align−stringops −minline−all−stringops−mpush−args
−maccumulate−outgoing−args −m128bit−long−double −m96bit−long−double −mregparm=num
−momit−leaf−frame−pointer −mno−red−zone −mno−tls−direct−seg−refs −mcmodel=code-model
−m32 −m64

gcc-4.0.3 2006-04-20 4

GCC(1) GNU GCC(1)

IA−64 Options −mbig−endian −mlittle−endian −mgnu−as −mgnu−ld −mno−pic
−mvolatile−asm−stop −mregister−names −mno−sdata −mconstant−gp −mauto−pic −min-
line−float−divide−min−latency −minline−float−divide−max−throughput −min-
line−int−divide−min−latency −minline−int−divide−max−throughput −min-
line−sqrt−min−latency −minline−sqrt−max−throughput −mno−dwarf2−asm −mearly−stop−bits
−mfixed−range=register-range −mtls−size=tls-size −mtune=cpu-type −mt −pthread −milp32
−mlp64

M32R/D Options−m32r2 −m32rx −m32r −mdebug −malign−loops −mno−align−loops −mis-
sue−rate=number −mbranch−cost=number −mmodel=code-size-model-type−msdata=sdata-type
−mno−flush−func −mflush−func=name−mno−flush−trap −mflush−trap=number−G num

M680x0 Options−m68000 −m68020 −m68020−40 −m68020−60 −m68030 −m68040−m68060
−mcpu32 −m5200 −m68881 −mbitfield −mc68000 −mc68020−mnobitfield −mrtd −mshort
−msoft−float −mpcrel −malign−int −mstrict−align −msep−data −mno−sep−data
−mshared−library−id=n −mid−shared−library −mno−id−shared−library

M68hc1x Options−m6811 −m6812 −m68hc11 −m68hc12−m68hcs12 −mauto−incdec−min-
max −mlong−calls −mshort−msoft−reg−count=count

MCore Options −mhardlit −mno−hardlit −mdi v −mno−div −mrelax−immediates
−mno−relax−immediates −mwide−bitfields −mno−wide−bitfields −m4byte−functions
−mno−4byte−functions −mcallgraph−data −mno−callgraph−data −mslow−bytes
−mno−slow−bytes −mno−lsim −mlittle−endian −mbig−endian −m210 −m340 −mstack−incre-
ment

MIPS Options−EL −EB −march=arch −mtune=arch −mips1 −mips2 −mips3 −mips4 −mips32
−mips32r2 −mips64 −mips16 −mno−mips16 −mabi=abi −mabicalls −mno−abicalls−mxgot
−mno−xgot −mgp32 −mgp64 −mfp32 −mfp64 −mhard−float −msoft−float −msingle−float
−mdouble−float −mpaired−single −mips3d −mint64 −mlong64 −mlong32 −msym32
−mno−sym32 −Gnum −membedded−data −mno−embedded−data−muninit−const−in−rodata
−mno−uninit−const−in−rodata −msplit−addresses −mno−split−addresses −mexplicit−relocs
−mno−explicit−relocs −mcheck−zero−division −mno−check−zero−division −mdivide−traps
−mdivide−breaks −mmemcpy −mno−memcpy −mlong−calls −mno−long−calls −mmad
−mno−mad −mfused−madd −mno−fused−madd −nocpp −mfix−r4000 −mno−fix−r4000
−mfix−r4400 −mno−fix−r4400 −mfix−vr4120 −mno−fix−vr4120 −mfix−vr4130−mfix−sb1
−mno−fix−sb1 −mflush−func=func −mno−flush−func −mbranch−likely −mno−branch−likely
−mfp−exceptions −mno−fp−exceptions −mvr4130−align −mno−vr4130−align

MMIX Options −mlibfuncs −mno−libfuncs −mepsilon −mno−epsilon −mabi=gnu
−mabi=mmixware −mzero−extend −mknuthdiv −mtoplevel−symbols −melf −mbranch−pre-
dict −mno−branch−predict −mbase−addresses −mno−base−addresses −msingle−exit
−mno−single−exit

MN10300 Options −mmult−bug −mno−mult−bug −mam33 −mno−am33 −mam33−2
−mno−am33−2 −mno−crt0 −mrelax

NS32KOptions−m32032 −m32332 −m32532 −m32081 −m32381 −mmult−add −mnomult−add
−msoft−float −mrtd −mnortd −mregparam −mnoregparam −msb −mnosb −mbitfield −mno-
bitfield −mhimem −mnohimem

PDP−11 Options −mfpu −msoft−float −mac0 −mno−ac0 −m40 −m45 −m10−mbcopy
−mbcopy−builtin −mint32 −mno−int16 −mint16 −mno−int32 −mfloat32 −mno−float64
−mfloat64 −mno−float32 −mabshi −mno−abshi −mbranch−expensive −mbranch−cheap
−msplit −mno−split −munix−asm −mdec−asm

PowerPC OptionsSeeRS/6000and PowerPC Options.

RS/6000 and PowerPC Options−mcpu=cpu-type −mtune=cpu-type −mpower −mno−power
−mpower2 −mno−power2 −mpowerpc −mpowerpc64 −mno−powerpc −maltivec −mno−altivec

gcc-4.0.3 2006-04-20 5

GCC(1) GNU GCC(1)

−mpowerpc−gpopt −mno−powerpc−gpopt −mpowerpc−gfxopt −mno−powerpc−gfxopt
−mnew−mnemonics −mold−mnemonics −mfull−toc −mminimal−toc −mno−fp−in−toc
−mno−sum−in−toc −m64 −m32 −mxl−compat −mno−xl−compat −mpe −malign−power
−malign−natural −msoft−float −mhard−float −mmultiple −mno−multiple −mstring
−mno−string −mupdate −mno−update −mfused−madd −mno−fused−madd −mbit−align
−mno−bit−align −mstrict−align −mno−strict−align −mrelocatable −mno−relocatable −mrelo-
catable−lib −mno−relocatable−lib −mtoc −mno−toc −mlittle −mlittle−endian −mbig
−mbig−endian −mdynamic−no−pic −mprioritize−restricted−insns=priority
−msched−costly−dep=dependence_type −minsert−sched−nops=scheme −mcall−sysv
−mcall−netbsd −maix−struct−return −msvr4−struct−return −mabi=altivec −mabi=no−altivec
−mabi=spe −mabi=no−spe−misel=yes −misel=no −mspe=yes −mspe=no−mfloat−gprs=yes
−mfloat−gprs=no −mfloat−gprs=single −mfloat−gprs=double −mprototype −mno−prototype
−msim −mmvme −mads −myellowknife −memb −msdata −msdata=opt −mvxworks
−mwindiss −Gnum −pthread

S/390 and zSeries Options−mtune=cpu-type −march=cpu-type −mhard−float −msoft−float
−mbackchain −mno−backchain −mpacked−stack −mno−packed−stack −msmall−exec
−mno−small−exec −mmvcle −mno−mvcle −m64 −m31 −mdebug −mno−debug −mesa
−mzarch −mtpf−trace −mno−tpf−trace −mfused−madd −mno−fused−madd−mwarn−framesize
−mwarn−dynamicstack −mstack−size−mstack−guard

SH Options −m1 −m2 −m2e −m3 −m3e −m4−nofpu −m4−single−only −m4−single −m4
−m4a−nofpu −m4a−single−only −m4a−single −m4a −m4al −m5−64media−m5−64media−nofpu
−m5−32media −m5−32media−nofpu −m5−compact −m5−compact−nofpu −mb −ml −mdalign
−mrelax −mbigtable −mfmovd −mhitachi −mrenesas −mno−renesas −mnomacsave −mieee
−misize −mpadstruct −mspace−mprefergot −musermode

SPARC Options −mcpu=cpu-type −mtune=cpu-type −mcmodel=code-model −m32 −m64
−mapp−regs −mno−app−regs −mfaster−structs −mno−faster−structs −mfpu −mno−fpu
−mhard−float −msoft−float −mhard−quad−float −msoft−quad−float −mimpure−text
−mno−impure−text −mlittle−endian −mstack−bias −mno−stack−bias−munaligned−doubles
−mno−unaligned−doubles −mv8plus−mno−v8plus −mvis −mno−vis−threads −pthreads

System V Options−Qy −Qn −YP,paths −Ym,dir

TMS320C3x/C4x Options−mcpu=cpu −mbig −msmall −mregparm −mmemparm −mfast−fix
−mmpyi −mbk −mti −mdp−isr−r eload −mrpts=count −mrptb −mdb −mloop−unsigned
−mparallel−insns −mparallel−mpy −mpreserve−float

V850 Options−mlong−calls −mno−long−calls −mep −mno−ep−mprolog−function −mno−pro-
log−function −mspace −mtda=n −msda=n −mzda=n −mapp−regs −mno−app−regs −mdis-
able−callt −mno−disable−callt−mv850e1 −mv850e −mv850 −mbig−switch

VAX Options−mg −mgnu −munix

x86−64 OptionsSee i386 and x86−64 Options.

Xstormy16 Options−msim

Xtensa Options−mconst16 −mno−const16 −mfused−madd −mno−fused−madd −mtext−sec-
tion−literals −mno−text−section−literals −mtarget−align −mno−target−align −mlongcalls
−mno−longcalls

zSeries OptionsSee S/390 and zSeries Options.

Code Generation Options
−fcall−saved−reg −fcall−used−reg −ffixed−reg −fexceptions −fnon−call−exceptions −fun-
wind−tables −fasynchronous−unwind−tables −finhibit−size−directive −finstrument−functions
−fno−common −fno−ident−fpcc−struct−return −fpic −fPIC −fpie −fPIE −fr eg−struct−return
−fshared−data −fshort−enums −fshort−double −fshort−wchar −fverbose−asm
−fpack−struct[=n] −fstack−check −fstack−limit−register=reg −fstack−limit−symbol=sym

gcc-4.0.3 2006-04-20 6

GCC(1) GNU GCC(1)

−fargument−alias −fargument−noalias −fargument−noalias−global −fleading−underscore
−ftls−model=model−ftrapv −fwrapv −fbounds−check−fvisibility

Options Controlling the Kind of Output

Compilation can involve up to four stages: preprocessing, compilation proper, assembly and linking, always
in that order. GCC is capable of preprocessing and compiling several files either into several assembler
input files, or into one assembler input file; then each assembler input file produces an object file, and link-
ing combines all the object files (those newly compiled, and those specified as input) into an executable file.

For any giv en input file, the file name suffix determines what kind of compilation is done:

file.c
C source code which must be preprocessed.

file.i
C source code which should not be preprocessed.

file.ii
C++source code which should not be preprocessed.

file.m
Objective-C source code. Note that you must link with thelibobjc library to make an Objective-C pro-
gram work.

file.mi
Objective-C source code which should not be preprocessed.

file.mm
file.M

Objective−C++ source code.Note that you must link with thelibobjc library to make an Objective−C++

program work. Notethat.M refers to a literal capital M.

file.mii
Objective−C++source code which should not be preprocessed.

file.h
C, C++, Objective-C or Objective−C++header file to be turned into a precompiled header.

file.cc
file.cp
file.cxx
file.cpp
file.CPP
file.c++
file.C

C++ source code which must be preprocessed. Note that in.cxx, the last two letters must both be liter-
ally x. Likewise,.C refers to a literal capital C.

file.hh
file.H

C++header file to be turned into a precompiled header.

file.f
file.for
file.FOR

Fortran source code which should not be preprocessed.

file.F
file.fpp
file.FPP

Fortran source code which must be preprocessed (with the traditional preprocessor).

gcc-4.0.3 2006-04-20 7

GCC(1) GNU GCC(1)

file.r
Fortran source code which must be preprocessed with aRATFOR preprocessor (not included with
GCC).

file.f90
file.f95

Fortran 90/95 source code which should not be preprocessed.

file.ads
Ada source code file which contains a library unit declaration (a declaration of a package, subprogram,
or generic, or a generic instantiation), or a library unit renaming declaration (a package, generic, or
subprogram renaming declaration). Such files are also calledspecs.

file.adb
Ada source code file containing a library unit body (a subprogram or package body).Such files are
also calledbodies.

file.s
Assembler code.

file.S
Assembler code which must be preprocessed.

other
An object file to be fed straight into linking.Any file name with no recognized suffix is treated this
way.

You can specify the input language explicitly with the−x option:

−x language
Specify explicitly thelanguage for the following input files (rather than letting the compiler choose a
default based on the file name suffix). This option applies to all following input files until the next −x
option. Possiblevalues forlanguageare:

c c −header c−cpp−output
c++ c++−header c++−cpp−output
objective−c objective−c−header objective−c−cpp−output
objective−c++ objective−c++−header objective−c++−cpp−output
assembler assembler−with−cpp
ada
f77 f77−cpp−input ratfor
f95
java
treelang

−x none
Turn off any specification of a language, so that subsequent files are handled according to their file
name suffixes (as they are if −x has not been used at all).

−pass−exit−codes
Normally thegccprogram will exit with the code of 1 if any phase of the compiler returns a non-suc-
cess return code. If you specify−pass−exit−codes, the gcc program will instead return with numeri-
cally highest error produced by any phase that returned an error indication.

If you only want some of the stages of compilation, you can use−x (or filename suffixes) to tellgccwhere
to start, and one of the options−c, −S, or −E to say wheregcc is to stop. Note that some combinations (for
example,−x cpp-output −E) instructgccto do nothing at all.

−c Compile or assemble the source files, but do not link. The linking stage simply is not done. The ulti-
mate output is in the form of an object file for each source file.

By default, the object file name for a source file is made by replacing the suffix.c, .i, .s, etc., with .o.

gcc-4.0.3 2006-04-20 8

GCC(1) GNU GCC(1)

Unrecognized input files, not requiring compilation or assembly, are ignored.

−S Stop after the stage of compilation proper; do not assemble.The output is in the form of an assembler
code file for each non-assembler input file specified.

By default, the assembler file name for a source file is made by replacing the suffix.c, .i, etc., with .s.

Input files that don’t require compilation are ignored.

−E Stop after the preprocessing stage; do not run the compiler proper. The output is in the form of pre-
processed source code, which is sent to the standard output.

Input files which don’t require preprocessing are ignored.

−o file
Place output in filefile. This applies regardless to whatever sort of output is being produced, whether
it be an executable file, an object file, an assembler file or preprocessed C code.

If −o is not specified, the default is to put an executable file ina.out, the object file forsource.suffixin
source.o, its assembler file insource.s, a precompiled header file insource.suffix.gch, and all prepro-
cessed C source on standard output.

−v Print (on standard error output) the commands executed to run the stages of compilation. Also print
the version number of the compiler driver program and of the preprocessor and the compiler proper.

−###
Like −v except the commands are not executed and all command arguments are quoted. This is useful
for shell scripts to capture the driver-generated command lines.

−pipe
Use pipes rather than temporary files for communication between the various stages of compilation.
This fails to work on some systems where the assembler is unable to read from a pipe; but theGNU
assembler has no trouble.

−combine
If you are compiling multiple source files, this option tells the driver to pass all the source files to the
compiler at once (for those languages for which the compiler can handle this).This will allow inter-
module analysis (IMA) to be performed by the compiler. Currently the only language for which this is
supported is C. If you pass source files for multiple languages to the driver, using this option, the
driver will invoke the compiler(s) that supportIMA once each, passing each compiler all the source
files appropriate for it.For those languages that do not supportIMA this option will be ignored, and
the compiler will be invoked once for each source file in that language. If you use this option in con-
junction with −save−temps, the compiler will generate multiple pre-processed files (one for each
source file), but only one (combined).o or .sfile.

−−help
Print (on the standard output) a description of the command line options understood bygcc. If the−v
option is also specified then−−help will also be passed on to the various processes invoked by gcc, so
that they can display the command line options they accept. If the −Wextra option is also specified
then command line options which have no documentation associated with them will also be displayed.

−−target−help
Print (on the standard output) a description of target specific command line options for each tool.

−−version
Display the version number and copyrights of the invoked GCC.

Compiling C++ Programs

C++source files conventionally use one of the suffixes .C, .cc, .cpp, .CPP, .c++, .cp, or .cxx; C++header files
often use.hh or .H; and preprocessed C++ files use the suffix .ii . GCC recognizes files with these names and
compiles them as C++ programs even if you call the compiler the same way as for compiling C programs
(usually with the namegcc).

gcc-4.0.3 2006-04-20 9

GCC(1) GNU GCC(1)

However, C++ programs often require class libraries as well as a compiler that understands the C++ lan-
guage−−−and under some circumstances, you might want to compile programs or header files from stan-
dard input, or otherwise without a suffix that flags them as C++programs. You might also like to precompile
a C header file with a.h extension to be used in C++ compilations.g++ is a program that callsGCCwith the
default language set to C++, and automatically specifies linking against the C++ library. On many systems,
g++ is also installed with the namec++.

When you compile C++ programs, you may specify many of the same command-line options that you use
for compiling programs in any language; or command-line options meaningful for C and related languages;
or options that are meaningful only for C++programs.

Options Controlling C Dialect

The following options control the dialect of C (or languages derived from C, such as C++, Objective-C and
Objective−C++) that the compiler accepts:

−ansi
In C mode, support allISO C90 programs. In C++ mode, remove GNU extensions that conflict withISO
C++.

This turns off certain features ofGCC that are incompatible withISO C90 (when compiling C code), or
of standard C++ (when compiling C++ code), such as theasm and typeof keywords, and predefined
macros such asunix and vax that identify the type of system you are using. It also enables the
undesirable and rarely usedISO trigraph feature.For the C compiler, it disables recognition of C++

style// comments as well as theinline keyword.

The alternate keywords _ _asm_ _ , _ _extension_ _ , _ _inline_ _ and _ _typeof_ _ con-
tinue to work despite−ansi. You would not want to use them in anISO C program, of course, but it is
useful to put them in header files that might be included in compilations done with−ansi. Alternate
predefined macros such as_ _unix_ _ and_ _vax_ _ are also available, with or without−ansi.

The−ansi option does not cause non-ISO programs to be rejected gratuitously. For that,−pedantic is
required in addition to−ansi.

The macro_ _STRICT_ANSI_ _ is predefined when the−ansi option is used. Some header files
may notice this macro and refrain from declaring certain functions or defining certain macros that the
ISO standard doesn’t call for; this is to avoid interfering with any programs that might use these names
for other things.

Functions which would normally be built in but do not have semantics defined byISO C (such as
alloca andffs) are not built-in functions with−ansi is used.

−std=
Determine the language standard. This option is currently only supported when compiling C or C++.
A value for this option must be provided; possible values are

c89
iso9899:1990

ISO C90 (same as−ansi).

iso9899:199409
ISO C90 as modified in amendment 1.

c99
c9x
iso9899:1999
iso9899:199x

ISO C99. Note that this standard is not yet fully supported; see
<http://gcc.gnu.org/gcc−4.0/c99status.html> for more information. The namesc9x and
iso9899:199xare deprecated.

gcc-4.0.3 2006-04-20 10

GCC(1) GNU GCC(1)

gnu89
Default,ISO C90 plusGNU extensions (including some C99 features).

gnu99
gnu9x

ISO C99 plusGNU extensions. WhenISO C99 is fully implemented inGCC, this will become the
default. Thenamegnu9x is deprecated.

c++98
The 1998ISO C++standard plus amendments.

gnu++98
The same as−std=c++98plusGNU extensions. Thisis the default for C++code.

Even when this option is not specified, you can still use some of the features of newer standards in so
far as they do not conflict with previous C standards.For example, you may use_ _restrict_ _
ev en when−std=c99is not specified.

The−std options specifying some version ofISO C hav ethe same effects as−ansi, except that features
that were not inISO C90 but are in the specified version (for example,// comments and theinline
keyword in ISO C99) are not disabled.

−aux−info filename
Output to the given filename prototyped declarations for all functions declared and/or defined in a
translation unit, including those in header files. This option is silently ignored in any language other
than C.

Besides declarations, the file indicates, in comments, the origin of each declaration (source file and
line), whether the declaration was implicit, prototyped or unprototyped (I , N for new or O for old,
respectively, in the first character after the line number and the colon), and whether it came from a
declaration or a definition (C or F, respectively, in the following character). In the case of function
definitions, a K&R−style list of arguments followed by their declarations is also provided, inside com-
ments, after the declaration.

−fno−asm
Do not recognizeasm, inline or typeof as a keyword, so that code can use these words as identi-
fiers. You can use the keywords _ _asm_ _ , _ _inline_ _ and _ _typeof_ _ instead. −ansi
implies−fno−asm.

In C++, this switch only affects thetypeof keyword, sinceasm andinline are standard keywords.
You may want to use the−fno−gnu−keywordsflag instead, which has the same effect. InC99 mode
(−std=c99or −std=gnu99), this switch only affects theasm andtypeof keywords, sinceinline is
a standard keyword in ISO C99.

−fno−builtin
−fno−builtin− function

Don’t recognize built-in functions that do not begin with_ _builtin_ as prefix.

GCCnormally generates special code to handle certain built-in functions more efficiently; for instance,
calls toalloca may become single instructions that adjust the stack directly, and calls tomemcpy
may become inline copy loops. Theresulting code is often both smaller and faster, but since the func-
tion calls no longer appear as such, you cannot set a breakpoint on those calls, nor can you change the
behavior of the functions by linking with a different library. In addition, when a function is recognized
as a built-in function,GCCmay use information about that function to warn about problems with calls
to that function, or to generate more efficient code, even if the resulting code still contains calls to that
function. For example, warnings are given with −Wformat for bad calls toprintf , whenprintf
is built in, andstrlen is known not to modify global memory.

With the−fno−builtin− functionoption only the built-in function function is disabled.functionmust
not begin with_ _builtin_ . If a function is named this is not built-in in this version ofGCC, this option
is ignored. There is no corresponding−fbuiltin− function option; if you wish to enable built-in

gcc-4.0.3 2006-04-20 11

GCC(1) GNU GCC(1)

functions selectively when using−fno−builtin or −ffreestanding, you may define macros such as:

#define abs(n) __builtin_abs ((n))
#define strcpy(d, s) __builtin_strcpy ((d), (s))

−fhosted
Assert that compilation takes place in a hosted environment. Thisimplies −fbuiltin . A hosted envi-
ronment is one in which the entire standard library is available, and in whichmain has a return type
of int . Examples are nearly everything except a kernel. Thisis equivalent to−fno−freestanding.

−ffreestanding
Assert that compilation takes place in a freestanding environment. Thisimplies−fno−builtin . A free-
standing environment is one in which the standard library may not exist, and program startup may not
necessarily be atmain . The most obvious example is anOS kernel. This is equivalent to
−fno−hosted.

−fms−extensions
Accept some non-standard constructs used in Microsoft header files.

Some cases of unnamed fields in structures and unions are only accepted with this option.

−trigraphs
SupportISO C trigraphs. The−ansi option (and−std options for strictISO C conformance) implies
−trigraphs .

−no−integrated−cpp
Performs a compilation in two passes: preprocessing and compiling.This option allows a user sup-
plied ‘‘cc1’’, ‘ ‘cc1plus’’, or ‘‘cc1obj’’ v ia the−B option. Theuser supplied compilation step can then
add in an additional preprocessing step after normal preprocessing but before compiling. The default
is to use the integrated cpp (internal cpp)

The semantics of this option will change if ‘‘cc1’’, ‘‘cc1plus’’, and ‘‘cc1obj’’ are merged.

−traditional
−traditional−cpp

Formerly, these options causedGCC to attempt to emulate a pre-standard C compiler. They are now
only supported with the−E switch. Thepreprocessor continues to support a pre-standard mode.See
theGNU CPPmanual for details.

−fcond−mismatch
Allow conditional expressions with mismatched types in the second and third arguments. Thevalue of
such an expression is void. Thisoption is not supported for C++.

−funsigned−char
Let the typechar be unsigned, likeunsigned char .

Each kind of machine has a default for whatchar should be. It is either like unsigned char by
default or likesigned char by default.

Ideally, a portable program should always usesigned char or unsigned char when it depends
on the signedness of an object. But many programs have been written to use plainchar and expect it
to be signed, or expect it to be unsigned, depending on the machines they were written for. This
option, and its inverse, let you make such a program work with the opposite default.

The typechar is always a distinct type from each ofsigned char or unsigned char , even
though its behavior is always just like one of those two.

−fsigned−char
Let the typechar be signed, likesigned char .

Note that this is equivalent to−fno−unsigned−char, which is the negative form of −funsigned−char.
Likewise, the option−fno−signed−charis equivalent to−funsigned−char.

gcc-4.0.3 2006-04-20 12

GCC(1) GNU GCC(1)

−fsigned−bitfields
−funsigned−bitfields
−fno−signed−bitfields
−fno−unsigned−bitfields

These options control whether a bit-field is signed or unsigned, when the declaration does not use
eithersigned or unsigned . By default, such a bit-field is signed, because this is consistent: the
basic integer types such asint are signed types.

Options Controlling C++ Dialect

This section describes the command-line options that are only meaningful for C++ programs; but you can
also use most of theGNU compiler options regardless of what language your program is in.For example,
you might compile a filefirstClass.C like this:

g++ −g −frepo −O −c firstClass.C

In this example, only−frepo is an option meant only for C++ programs; you can use the other options with
any language supported byGCC.

Here is a list of options that areonly for compiling C++programs:

−fabi−version=n
Use versionn of the C++ ABI . Version 2 is the version of the C++ ABI that first appeared in G++ 3.4.
Version 1 is the version of the C++ ABI that first appeared in G++ 3.2.Version 0 will always be the ver-
sion that conforms most closely to the C++ ABI specification. Therefore,the ABI obtained using ver-
sion 0 will change asABI bugs are fixed.

The default is version 2.

−fno−access−control
Turn off all access checking.This switch is mainly useful for working around bugs in the access con-
trol code.

−fcheck−new
Check that the pointer returned byoperator new is non-null before attempting to modify the stor-
age allocated. This check is normally unnecessary because the C++ standard specifies thatoperator
new will only return 0 if it is declaredthrow(), in which case the compiler will always check the
return value even without this option. In all other cases, whenoperator new has a non-empty
exception specification, memory exhaustion is signalled by throwing std::bad_alloc . See also
new (nothrow).

−fconserve−space
Put uninitialized or runtime-initialized global variables into the common segment, as C does.This
saves space in the executable at the cost of not diagnosing duplicate definitions. If you compile with
this flag and your program mysteriously crashes aftermain() has completed, you may have an object
that is being destroyed twice because two definitions were merged.

This option is no longer useful on most targets, now that support has been added for putting variables
into BSSwithout making them common.

−fno−const−strings
Give string constants typechar * instead of typeconst char * . By default, G++ uses type
const char * as required by the standard.Even if you use−fno−const−strings, you cannot actu-
ally modify the value of a string constant.

This option might be removed in a future release of G++.For maximum portability, you should struc-
ture your code so that it works with string constants that have typeconst char * .

−fno−elide−constructors
The C++ standard allows an implementation to omit creating a temporary which is only used to initial-
ize another object of the same type.Specifying this option disables that optimization, and forces G++
to call the copy constructor in all cases.

gcc-4.0.3 2006-04-20 13

GCC(1) GNU GCC(1)

−fno−enforce−eh−specs
Don’t check for violation of exception specifications at runtime.This option violates the C++ standard,
but may be useful for reducing code size in production builds, much like defining NDEBUG. The
compiler will still optimize based on the exception specifications.

−ffor−scope
−fno−for−scope

If −ffor−scope is specified, the scope of variables declared in afor-init-statementis limited to thefor
loop itself, as specified by the C++ standard. If−fno−for−scope is specified, the scope of variables
declared in afor-init-statementextends to the end of the enclosing scope, as was the case in old ver-
sions of G++, and other (traditional) implementations of C++.

The default if neither flag is given to follow the standard, but to allow and give a warning for old-style
code that would otherwise be invalid, or have different behavior.

−fno−gnu−keywords
Do not recognizetypeof as a keyword, so that code can use this word as an identifier. You can use
the keyword _ _typeof_ _ instead.−ansi implies−fno−gnu−keywords.

−fno−implicit−templates
Never emit code for non-inline templates which are instantiated implicitly (i.e. by use); only emit code
for explicit instantiations.

−fno−implicit−inline−templates
Don’t emit code for implicit instantiations of inline templates, either. The default is to handle inlines
differently so that compiles with and without optimization will need the same set of explicit instantia-
tions.

−fno−implement−inlines
To sav espace, do not emit out-of-line copies of inline functions controlled by#pragma implementa-
tion. This will cause linker errors if these functions are not inlined everywhere they are called.

−fms−extensions
Disable pedantic warnings about constructs used inMFC, such as implicit int and getting a pointer to
member function via non-standard syntax.

−fno−nonansi−builtins
Disable built-in declarations of functions that are not mandated byANSI/ISO C. Theseinclude ffs ,
alloca , _exit , index , bzero , conjf , and other related functions.

−fno−operator−names
Do not treat the operator name keywords and , bitand , bitor , compl , not , or andxor as syn-
onyms as keywords.

−fno−optional−diags
Disable diagnostics that the standard says a compiler does not need to issue.Currently, the only such
diagnostic issued by G++ is the one for a name having multiple meanings within a class.

−fpermissive
Downgrade some diagnostics about nonconformant code from errors to warnings. Thus,using−fper-
missivewill allow some nonconforming code to compile.

−frepo
Enable automatic template instantiation at link time. This option also implies−fno−implicit−tem-
plates.

−fno−rtti
Disable generation of information about every class with virtual functions for use by the C++ runtime
type identification features (dynamic_castand typeid). If you don’t use those parts of the language,
you can save some space by using this flag. Note that exception handling uses the same information,
but it will generate it as needed.

gcc-4.0.3 2006-04-20 14

GCC(1) GNU GCC(1)

−fstats
Emit statistics about front-end processing at the end of the compilation.This information is generally
only useful to the G++ development team.

−ftemplate−depth−n
Set the maximum instantiation depth for template classes ton. A limit on the template instantiation
depth is needed to detect endless recursions during template class instantiation.ANSI/ISO C++ con-
forming programs must not rely on a maximum depth greater than 17.

−fno−threadsafe−statics
Do not emit the extra code to use the routines specified in the C++ ABI for thread-safe initialization of
local statics. You can use this option to reduce code size slightly in code that doesn’t need to be
thread−safe.

−fuse−cxa−atexit
Register destructors for objects with static storage duration with the_ _cxa_atexit function rather
than theatexit function. Thisoption is required for fully standards-compliant handling of static
destructors, but will only work if your C library supports_ _cxa_atexit .

−fvisibility−inlines−hidden
Causes all inlined methods to be marked with_ _attribute_ _ ((visibility ("hid-
den"))) so that they do not appear in the export table of aDSOand do not require aPLT indirection
when used within theDSO. Enabling this option can have a dramatic effect on load and link times of a
DSO as it massively reduces the size of the dynamic export table when the library makes heavy use of
templates. Whileit can cause bloating through duplication of code within eachDSO where it is used,
often the wastage is less than the considerable space occupied by a long symbol name in the export ta-
ble which is typical when using templates and namespaces.For even more savings, combine with the
−fvisibility=hidden switch.

−fno−weak
Do not use weak symbol support, even if i t is provided by the linker. By default, G++ will use weak
symbols if they are available. Thisoption exists only for testing, and should not be used by end−users;
it will result in inferior code and has no benefits.This option may be removed in a future release of
G++.

−nostdinc++
Do not search for header files in the standard directories specific to C++, but do still search the other
standard directories. (This option is used when building the C++ library.)

In addition, these optimization, warning, and code generation options have meanings only for C++programs:

−fno−default−inline
Do not assumeinline for functions defined inside a class scope.
Note that these functions will have linkage like inline functions; they just won’t be inlined by default.

−Wabi (C++only)
Warn when G++ generates code that is probably not compatible with the vendor-neutral C++ ABI .
Although an effort has been made to warn about all such cases, there are probably some cases that are
not warned about, even though G++ is generating incompatible code. There may also be cases where
warnings are emitted even though the code that is generated will be compatible.

You should rewrite your code to avoid these warnings if you are concerned about the fact that code
generated by G++ may not be binary compatible with code generated by other compilers.

The known incompatibilities at this point include:

* I ncorrect handling of tail-padding for bit−fields. G++ may attempt to pack data into the same
byte as a base class.For example:

struct A { virtual void f(); int f1 : 1; };
struct B : public A { int f2 : 1; };

gcc-4.0.3 2006-04-20 15

GCC(1) GNU GCC(1)

In this case, G++ will placeB::f2 into the same byte asA::f1 ; other compilers will not.You
can avoid this problem by explicitly paddingA so that its size is a multiple of the byte size on
your platform; that will cause G++ and other compilers to layoutB identically.

* I ncorrect handling of tail-padding for virtual bases. G++ does not use tail padding when laying
out virtual bases.For example:

struct A { virtual void f(); char c1; };
struct B { B(); char c2; };
struct C : public A, public virtual B {};

In this case, G++ will not placeB into the tail-padding forA; other compilers will.You can avoid
this problem by explicitly paddingA so that its size is a multiple of its alignment (ignoring virtual
base classes); that will cause G++ and other compilers to layoutC identically.

* I ncorrect handling of bit-fields with declared widths greater than that of their underlying types,
when the bit-fields appear in a union.For example:

union U { int i : 4096; };

Assuming that anint does not have 4096 bits, G++ will make the union too small by the num-
ber of bits in anint .

* Empty classes can be placed at incorrect offsets. For example:

struct A {};

struct B {
A a;
virtual void f ();

};

struct C : public B, public A {};

G++ will place theA base class ofC at a nonzero offset; it should be placed at offset zero.G++
mistakenly believes that theA data member ofB is already at offset zero.

* Names of template functions whose types involve typename or template template parameters
can be mangled incorrectly.

template <typename Q>
void f(typename Q::X) {}

template <template <typename> class Q>
void f(typename Q<int>::X) {}

Instantiations of these templates may be mangled incorrectly.

−Wctor−dtor−pri vacy (C++only)
Warn when a class seems unusable because all the constructors or destructors in that class are private,
and it has neither friends nor public static member functions.

−Wnon−virtual−dtor (C++only)
Warn when a class appears to be polymorphic, thereby requiring a virtual destructor, yet it declares a
non-virtual one. This warning is enabled by−Wall .

−Wreorder (C++only)
Warn when the order of member initializers given in the code does not match the order in which they
must be executed. For instance:

gcc-4.0.3 2006-04-20 16

GCC(1) GNU GCC(1)

struct A {
int i;
int j;
A(): j (0), i (1) { }

};

The compiler will rearrange the member initializers fori and j to match the declaration order of the
members, emitting a warning to that effect. Thiswarning is enabled by−Wall .

The following−W... options are not affected by−Wall .

−Weffc++ (C++only)
Warn about violations of the following style guidelines from Scott Meyers’Effective C++ book:

* I tem 11: Define a copy constructor and an assignment operator for classes with dynamically allo-
cated memory.

* I tem 12: Prefer initialization to assignment in constructors.

* I tem 14: Make destructors virtual in base classes.

* I tem 15: Haveoperator= return a reference to*this .

* I tem 23: Don’t try to return a reference when you must return an object.

Also warn about violations of the following style guidelines from Scott Meyers’ More Effective C++

book:

* I tem 6: Distinguish between prefix and postfix forms of increment and decrement operators.

* I tem 7: Never overload&&,  , or , .

When selecting this option, be aware that the standard library headers do not obey all of these guide-
lines; usegrep −v to filter out those warnings.

−Wno−deprecated(C++only)
Do not warn about usage of deprecated features.

−Wstrict−null−sentinel (C++only)
Warn also about the use of an uncastedNULL as sentinel.When compiling only withGCC this is a
valid sentinel, asNULL is defined to_ _null . Although it is a null pointer constant not a null
pointer, it is guaranteed to of the same size as a pointer. But this use is not portable across different
compilers.

−Wno−non−template−friend (C++only)
Disable warnings when non-templatized friend functions are declared within a template. Since the
advent of explicit template specification support in G++, if the name of the friend is an unqualified-id
(i.e., friend foo(int)), the C++ language specification demands that the friend declare or define an ordi-
nary, nontemplate function. (Section 14.5.3). Before G++ implemented explicit specification, unqual-
ified-ids could be interpreted as a particular specialization of a templatized function.Because this
non-conforming behavior is no longer the default behavior for G++,−Wnon−template−friend allows
the compiler to check existing code for potential trouble spots and is on by default. Thisnew compiler
behavior can be turned off with −Wno−non−template−friend which keeps the conformant compiler
code but disables the helpful warning.

−Wold−style−cast(C++only)
Warn if an old-style (C−style) cast to a non-void type is used within a C++ program. Thenew-style
casts (static_cast, reinterpret_cast, and const_cast) are less vulnerable to unintended effects and
much easier to search for.

−Woverloaded−virtual (C++only)
Warn when a function declaration hides virtual functions from a base class.For example, in:

gcc-4.0.3 2006-04-20 17

GCC(1) GNU GCC(1)

struct A {
virtual void f();

};

struct B: public A {
void f(int);

};

theA class version off is hidden inB, and code like:

B* b;
b−>f();

will fail to compile.

−Wno−pmf−conversions (C++only)
Disable the diagnostic for converting a bound pointer to member function to a plain pointer.

−Wsign−promo (C++only)
Warn when overload resolution chooses a promotion from unsigned or enumerated type to a signed
type, over a conversion to an unsigned type of the same size.Previous versions of G++ would try to
preserve unsignedness, but the standard mandates the current behavior.

struct A {
operator int ();
A& operator = (int);

};

main ()
{

A a,b;
a = b;

}

In this example, G++ will synthesize a default A& operator = (const A&); , while cfront will use the
user-definedoperator =.

Options Controlling Objective-C and Objective−C++ Dialects

(NOTE: This manual does not describe the Objective-C and Objective−C++ languages themselves. See

This section describes the command-line options that are only meaningful for Objective-C and
Objective−C++ programs, but you can also use most of the language-independentGNU compiler options.
For example, you might compile a filesome_class.m like this:

gcc −g −fgnu−runtime −O −c some_class.m

In this example,−fgnu−runtime is an option meant only for Objective-C and Objective−C++ programs; you
can use the other options with any language supported byGCC.

Note that since Objective-C is an extension of the C language, Objective-C compilations may also use
options specific to the C front-end (e.g.,−Wtraditional). Similarly, Objective−C++ compilations may use
C++−specific options (e.g.,−Wabi).

Here is a list of options that areonly for compiling Objective-C and Objective−C++programs:

−fconstant−string−class=class-name
Useclass-nameas the name of the class to instantiate for each literal string specified with the syntax
@"..." . The default class name isNXConstantString if the GNU runtime is being used, and
NSConstantString if the NeXT runtime is being used (see below). The −fconstant−cfstrings
option, if also present, will override the−fconstant−string−classsetting and cause@"..." literals to
be laid out as constant CoreFoundation strings.

gcc-4.0.3 2006-04-20 18

GCC(1) GNU GCC(1)

−fgnu−runtime
Generate object code compatible with the standardGNU Objective-C runtime. This is the default for
most types of systems.

−fnext−runtime
Generate output compatible with the NeXT runtime. This is the default for NeXT-based systems,
including Darwin and MacOS X. The macro_ _NEXT_RUNTIME_ _ is predefined if (and only if)
this option is used.

−fno−nil−receivers
Assume that all Objective-C message dispatches (e.g.,[receiver message:arg]) in this trans-
lation unit ensure that the receiver is not nil . This allows for more efficient entry points in the run-
time to be used.Currently, this option is only available in conjunction with the NeXT runtime on Mac
OSX 10.3 and later.

−fobjc−exceptions
Enable syntactic support for structured exception handling in Objective−C, similar to what is offered
by C++and Java. Currently, this option is only available in conjunction with the NeXT runtime on Mac
OSX 10.3 and later.

@try {
...

@throw expr;
...

}
@catch (AnObjCClass *exc) {

...
@throw expr;

...
@throw;

...
}
@catch (AnotherClass *exc) {

...
}
@catch (id allOthers) {

...
}
@finally {

...
@throw expr;

...
}

The @throw statement may appear anywhere in an Objective-C or Objective−C++ program; when
used inside of a@catch block, the@throw may appear without an argument (as shown above), in
which case the object caught by the@catch will be rethrown.

Note that only (pointers to) Objective-C objects may be thrown and caught using this scheme.When
an object is thrown, it will be caught by the nearest@catch clause capable of handling objects of that
type, analogously to how catch blocks work in C++ and Java. A @catch(id ...) clause (as
shown above) may also be provided to catch any and all Objective-C exceptions not caught by previ-
ous@catch clauses (if any).

The @finally clause, if present, will be executed upon exit from the immediately preceding@try
... @catch section. Thiswill happen regardless of whether any exceptions are thrown, caught or
rethrown inside the@try ... @catch section, analogously to the behavior of thefinally
clause in Java.

gcc-4.0.3 2006-04-20 19

GCC(1) GNU GCC(1)

There are several caveats to using the new exception mechanism:

* A lthough currently designed to be binary compatible withNS_HANDLER−style idioms provided
by theNSException class, the new exceptions can only be used on MacOS X 10.3 (Panther)
and later systems, due to additional functionality needed in the (NeXT) Objective-C runtime.

* A s mentioned above, the new exceptions do not support handling types other than Objective-C
objects. Furthermore,when used from Objective−C++, the Objective-C exception model does not
interoperate with C++ exceptions at this time. This means you cannot@throw an exception from
Objective-C andcatch it in C++, or vice versa (i.e.,throw ... @catch).

The −fobjc−exceptionsswitch also enables the use of synchronization blocks for thread-safe execu-
tion:

@synchronized (ObjCClass *guard) {
...

}

Upon entering the@synchronized block, a thread of execution shall first check whether a lock has
been placed on the correspondingguard object by another thread. If it has, the current thread shall
wait until the other thread relinquishes its lock.Onceguard becomes available, the current thread
will place its own lock on it, execute the code contained in the@synchronized block, and finally
relinquish the lock (thereby makingguard available to other threads).

Unlike Java, Objective-C does not allow for entire methods to be marked @synchronized . Note
that throwing exceptions out of@synchronized blocks is allowed, and will cause the guarding
object to be unlocked properly.

−freplace−objc−classes
Emit a special marker instructingld (1) not to statically link in the resulting object file, and allow
dyld (1) to load it in at run time instead.This is used in conjunction with the Fix-and-Continue debug-
ging mode, where the object file in question may be recompiled and dynamically reloaded in the
course of program execution, without the need to restart the program itself.Currently, Fix-and-Con-
tinue functionality is only available in conjunction with the NeXT runtime on MacOS X 10.3 and
later.

−fzero−link
When compiling for the NeXT runtime, the compiler ordinarily replaces calls toobjc_get-
Class("...") (when the name of the class is known at compile time) with static class references
that get initialized at load time, which improves run-time performance. Specifying the−fzero−link
flag suppresses this behavior and causes calls toobjc_getClass("...") to be retained. This is
useful in Zero-Link debugging mode, since it allows for individual class implementations to be modi-
fied during program execution.

−gen−decls
Dump interface declarations for all classes seen in the source file to a file namedsourcename.decl.

−Wno−protocol
If a class is declared to implement a protocol, a warning is issued for every method in the protocol that
is not implemented by the class. The default behavior is to issue a warning for every method not
explicitly implemented in the class, even if a method implementation is inherited from the superclass.
If you use the−Wno−protocol option, then methods inherited from the superclass are considered to
be implemented, and no warning is issued for them.

−Wselector
Warn if multiple methods of different types for the same selector are found during compilation.The
check is performed on the list of methods in the final stage of compilation.Additionally, a check is
performed for each selector appearing in a@selector(...) expression, and a corresponding
method for that selector has been found during compilation. Because these checks scan the method ta-
ble only at the end of compilation, these warnings are not produced if the final stage of compilation is
not reached, for example because an error is found during compilation, or because the−fsyntax−only

gcc-4.0.3 2006-04-20 20

GCC(1) GNU GCC(1)

option is being used.

−Wundeclared−selector
Warn if a @selector(...) expression referring to an undeclared selector is found.A selector is
considered undeclared if no method with that name has been declared before the@selector(...)
expression, either explicitly in an @interface or @protocol declaration, or implicitly in an
@implementation section. Thisoption always performs its checks as soon as a@selec-
tor(...) expression is found, while−Wselectoronly performs its checks in the final stage of com-
pilation. Thisalso enforces the coding style convention that methods and selectors must be declared
before being used.

−print−objc−runtime−info
Generate C header describing the largest structure that is passed by value, if any.

Options to Control Diagnostic Messages Formatting

Traditionally, diagnostic messages have been formatted irrespective of the output device’s aspect (e.g. its
width, ...). The options described below can be used to control the diagnostic messages formatting algo-
rithm, e.g. how many characters per line, how often source location information should be reported.Right
now, only the C++ front end can honor these options.However it is expected, in the near future, that the
remaining front ends would be able to digest them correctly.

−fmessage−length=n
Try to format error messages so that they fit on lines of aboutn characters. Thedefault is 72 charac-
ters forg++ and 0 for the rest of the front ends supported byGCC. If n is zero, then no line-wrapping
will be done; each error message will appear on a single line.

−fdiagnostics−show−location=once
Only meaningful in line-wrapping mode. Instructs the diagnostic messages reporter to emitonce
source location information; that is, in case the message is too long to fit on a single physical line and
has to be wrapped, the source location won’t be emitted (as prefix) again, over and over, in subsequent
continuation lines. This is the default behavior.

−fdiagnostics−show−location=every−line
Only meaningful in line-wrapping mode.Instructs the diagnostic messages reporter to emit the same
source location information (as prefix) for physical lines that result from the process of breaking a
message which is too long to fit on a single line.

Options to Request or Suppress Warnings

Warnings are diagnostic messages that report constructions which are not inherently erroneous but which
are risky or suggest there may have been an error.

You can request many specific warnings with options beginning −W, for example−Wimplicit to request
warnings on implicit declarations. Each of these specific warning options also has a negative form begin-
ning −Wno− to turn off warnings; for example,−Wno−implicit . This manual lists only one of the two
forms, whichever is not the default.

The following options control the amount and kinds of warnings produced byGCC; for further, language-
specific options also refer toC++ Dialect OptionsandObjective-C and Objective−C++ Dialect Options.

−fsyntax−only
Check the code for syntax errors, but don’t do anything beyond that.

−pedantic
Issue all the warnings demanded by strictISO C and ISO C++; reject all programs that use forbidden
extensions, and some other programs that do not follow ISO C and ISO C++. For ISO C, follows the
version of theISO C standard specified by any−std option used.

Valid ISO C and ISO C++ programs should compile properly with or without this option (though a rare
few will require −ansi or a−std option specifying the required version ofISO C). However, without
this option, certainGNU extensions and traditional C and C++ features are supported as well.With this

gcc-4.0.3 2006-04-20 21

GCC(1) GNU GCC(1)

option, they are rejected.

−pedanticdoes not cause warning messages for use of the alternate keywords whose names begin and
end with_ _. Pedantic warnings are also disabled in the expression that follows _ _extension_ _ .
However, only system header files should use these escape routes; application programs should avoid
them.

Some users try to use−pedantic to check programs for strictISO C conformance. They soon find that
it does not do quite what they want: it finds some non-ISO practices, but not all−−−only those for
which ISO C requiresa diagnostic, and some others for which diagnostics have been added.

A feature to report any failure to conform toISO C might be useful in some instances, but would
require considerable additional work and would be quite different from−pedantic. We don’t hav e
plans to support such a feature in the near future.

Where the standard specified with−std represents aGNU extended dialect of C, such asgnu89 or
gnu99, there is a correspondingbase standard, the version ofISO C on which theGNU extended
dialect is based.Warnings from−pedanticare given where they are required by the base standard.(It
would not make sense for such warnings to be given only for features not in the specifiedGNU C
dialect, since by definition theGNU dialects of C include all features the compiler supports with the
given option, and there would be nothing to warn about.)

−pedantic−errors
Like −pedantic, except that errors are produced rather than warnings.

−w Inhibit all warning messages.

−Wno−import
Inhibit warning messages about the use of#import .

−Wchar−subscripts
Warn if an array subscript has typechar . This is a common cause of error, as programmers often for-
get that this type is signed on some machines. This warning is enabled by−Wall .

−Wcomment
Warn whenever a comment-start sequence/* appears in a/* comment, or whenever a Backslash-New-
line appears in a// comment. Thiswarning is enabled by−Wall .

−Wfatal−errors
This option causes the compiler to abort compilation on the first error occurred rather than trying to
keep going and printing further error messages.

−Wformat
Check calls toprintf andscanf , etc., to make sure that the arguments supplied have types appro-
priate to the format string specified, and that the conversions specified in the format string make sense.
This includes standard functions, and others specified by format attributes, in theprintf , scanf ,
strftime andstrfmon (an X/Open extension, not in the C standard) families (or other target-spe-
cific families). Whichfunctions are checked without format attributes having been specified depends
on the standard version selected, and such checks of functions without the attribute specified are dis-
abled by−ffreestandingor −fno−builtin .

The formats are checked against the format features supported byGNU libc version 2.2. These include
all ISO C90 and C99 features, as well as features from the Single Unix Specification and someBSD
andGNU extensions. Otherlibrary implementations may not support all these features;GCC does not
support warning about features that go beyond a particular library’s limitations. However, if −pedan-
tic is used with−Wformat , warnings will be given about format features not in the selected standard
version (but not forstrfmon formats, since those are not in any version of the C standard).

Since−Wformat also checks for null format arguments for several functions,−Wformat also implies
−Wnonnull .

−Wformat is included in−Wall . For more control over some aspects of format checking, the options

gcc-4.0.3 2006-04-20 22

GCC(1) GNU GCC(1)

−Wformat−y2k , −Wno−format−extra−args, −Wno−format−zero−length, −Wformat−nonliteral ,
−Wformat−security, and−Wformat=2 are available, but are not included in−Wall .

−Wformat−y2k
If −Wformat is specified, also warn aboutstrftime formats which may yield only a two-digit year.

−Wno−format−extra−args
If −Wformat is specified, do not warn about excess arguments to aprintf or scanf format func-
tion. TheC standard specifies that such arguments are ignored.

Where the unused arguments lie between used arguments that are specified with$ operand number
specifications, normally warnings are still given, since the implementation could not know what type
to pass tova_arg to skip the unused arguments. However, in the case ofscanf formats, this option
will suppress the warning if the unused arguments are all pointers, since the Single Unix Specification
says that such unused arguments are allowed.

−Wno−format−zero−length
If −Wformat is specified, do not warn about zero-length formats. The C standard specifies that zero-
length formats are allowed.

−Wformat−nonliteral
If −Wformat is specified, also warn if the format string is not a string literal and so cannot be
checked, unless the format function takes its format arguments as ava_list .

−Wformat−security
If −Wformat is specified, also warn about uses of format functions that represent possible security
problems. Atpresent, this warns about calls toprintf andscanf functions where the format string
is not a string literal and there are no format arguments, as inprintf (foo); . This may be a secu-
rity hole if the format string came from untrusted input and contains%n . (This is currently a subset
of what −Wformat−nonliteral warns about, but in future warnings may be added to−Wfor-
mat−security that are not included in−Wformat−nonliteral .)

−Wformat=2
Enable−Wformat plus format checks not included in−Wformat . Currently equivalent to−Wformat
−Wformat−nonliteral −Wformat−security −Wformat−y2k .

−Wnonnull
Warn about passing a null pointer for arguments marked as requiring a non-null value by thenon-
null function attribute.

−Wnonnull is included in−Wall and−Wformat . It can be disabled with the−Wno−nonnull option.

−Winit−self (C, C++, Objective-C and Objective−C++only)
Warn about uninitialized variables which are initialized with themselves. Notethis option can only be
used with the−Wuninitialized option, which in turn only works with−O1 and above.

For example, GCC will warn about i being uninitialized in the following snippet only when
−Winit−self has been specified:

int f()
{

int i = i;
return i;

}

−Wimplicit−int
Warn when a declaration does not specify a type. This warning is enabled by−Wall .

−Wimplicit−function−declaration
−Werror−implicit−function−declaration

Give a warning (or error) whenever a function is used before being declared.The form
−Wno−error−implicit−function−declaration is not supported.This warning is enabled by−Wall

gcc-4.0.3 2006-04-20 23

GCC(1) GNU GCC(1)

(as a warning, not an error).

−Wimplicit
Same as−Wimplicit−int and−Wimplicit−function−declaration . This warning is enabled by−Wall .

−Wmain
Warn if the type ofmain is suspicious.main should be a function with external linkage, returning int,
taking either zero arguments, two, or three arguments of appropriate types. This warning is enabled by
−Wall .

−Wmissing−braces
Warn if an aggregate or union initializer is not fully bracketed. Inthe following example, the initial-
izer fora is not fully bracketed, but that forb is fully bracketed.

int a[2][2] = { 0, 1, 2, 3 };
int b[2][2] = { { 0, 1 }, { 2, 3 } };

This warning is enabled by−Wall .

−Wmissing−include−dirs(C, C++, Objective-C and Objective−C++only)
Warn if a user-supplied include directory does not exist.

−Wparentheses
Warn if parentheses are omitted in certain contexts, such as when there is an assignment in a context
where a truth value is expected, or when operators are nested whose precedence people often get con-
fused about. Only the warning for an assignment used as a truth value is supported when compiling
C++; the other warnings are only supported when compiling C.

Also warn if a comparison like x<=y<=z appears; this is equivalent to(x<=y ? 1 : 0) <= z, which is a
different interpretation from that of ordinary mathematical notation.

Also warn about constructions where there may be confusion to whichif statement anelse branch
belongs. Hereis an example of such a case:

{
if (a)

if (b)
foo ();

else
bar ();

}

In C, every else branch belongs to the innermost possibleif statement, which in this example isif
(b) . This is often not what the programmer expected, as illustrated in the above example by indenta-
tion the programmer chose. When there is the potential for this confusion,GCC will issue a warning
when this flag is specified.To eliminate the warning, add explicit braces around the innermostif
statement so there is no way theelse could belong to the enclosingif . The resulting code would
look like this:

{
if (a)

{
if (b)

foo ();
else

bar ();
}

}

This warning is enabled by−Wall .

gcc-4.0.3 2006-04-20 24

GCC(1) GNU GCC(1)

−Wsequence−point
Warn about code that may have undefined semantics because of violations of sequence point rules in
the C standard.

The C standard defines the order in which expressions in a C program are evaluated in terms of
sequence points, which represent a partial ordering between the execution of parts of the program:
those executed before the sequence point, and those executed after it. These occur after the evaluation
of a full expression (one which is not part of a larger expression), after the evaluation of the first
operand of a&&,  , ? : or , (comma) operator, before a function is called (but after the evaluation
of its arguments and the expression denoting the called function), and in certain other places.Other
than as expressed by the sequence point rules, the order of evaluation of subexpressions of an expres-
sion is not specified. All these rules describe only a partial order rather than a total order, since, for
example, if two functions are called within one expression with no sequence point between them, the
order in which the functions are called is not specified.However, the standards committee have ruled
that function calls do not overlap.

It is not specified when between sequence points modifications to the values of objects take effect.
Programs whose behavior depends on this have undefined behavior; the C standard specifies that
‘‘ Between the previous and next sequence point an object shall have its stored value modified at most
once by the evaluation of an expression. Furthermore,the prior value shall be read only to determine
the value to be stored.’’ . If a program breaks these rules, the results on any particular implementation
are entirely unpredictable.

Examples of code with undefined behavior area = a++; , a[n] = b[n++] anda[i++] = i; .
Some more complicated cases are not diagnosed by this option, and it may give an occasional false
positive result, but in general it has been found fairly effective at detecting this sort of problem in pro-
grams.

The present implementation of this option only works for C programs.A future implementation may
also work for C++programs.

The C standard is worded confusingly, therefore there is some debate over the precise meaning of the
sequence point rules in subtle cases.Links to discussions of the problem, including proposed formal
definitions, may be found on theGCC readings page, at <http://gcc.gnu.org/readings.html>.

This warning is enabled by−Wall .

−Wreturn−type
Warn whenever a function is defined with a return-type that defaults toint . Also warn about any
return statement with no return-value in a function whose return-type is notvoid .

For C, also warn if the return type of a function has a type qualifier such asconst . Such a type quali-
fier has no effect, since the value returned by a function is not an lvalue. ISO C prohibits qualified
void return types on function definitions, so such return types always receive a warning even without
this option.

For C++, a function without return type always produces a diagnostic message, even when
−Wno−return−type is specified. The only exceptions aremain and functions defined in system head-
ers.

This warning is enabled by−Wall .

−Wswitch
Warn whenever a switch statement has an index of enumerated type and lacks acase for one or
more of the named codes of that enumeration.(The presence of adefault label prevents this warn-
ing.) case labels outside the enumeration range also provoke warnings when this option is used.
This warning is enabled by−Wall .

−Wswitch−default
Warn whenever aswitch statement does not have adefault case.

gcc-4.0.3 2006-04-20 25

GCC(1) GNU GCC(1)

−Wswitch−enum
Warn whenever a switch statement has an index of enumerated type and lacks acase for one or
more of the named codes of that enumeration.case labels outside the enumeration range also pro-
voke warnings when this option is used.

−Wtrigraphs
Warn if any trigraphs are encountered that might change the meaning of the program (trigraphs within
comments are not warned about). This warning is enabled by−Wall .

−Wunused−function
Warn whenever a static function is declared but not defined or a non-inline static function is unused.
This warning is enabled by−Wall .

−Wunused−label
Warn whenever a label is declared but not used. This warning is enabled by−Wall .

To suppress this warning use theunusedattribute.

−Wunused−parameter
Warn whenever a function parameter is unused aside from its declaration.

To suppress this warning use theunusedattribute.

−Wunused−variable
Warn whenever a local variable or non-constant static variable is unused aside from its declaration
This warning is enabled by−Wall .

To suppress this warning use theunusedattribute.

−Wunused−value
Warn whenever a statement computes a result that is explicitly not used.This warning is enabled by
−Wall .

To suppress this warning cast the expression tovoid.

−Wunused
All the above−Wunusedoptions combined.

In order to get a warning about an unused function parameter, you must either specify−Wextra
−Wunused(note that−Wall implies−Wunused), or separately specify−Wunused−parameter.

−Wuninitialized
Warn if an automatic variable is used without first being initialized or if a variable may be clobbered
by asetjmp call.

These warnings are possible only in optimizing compilation, because they require data flow informa-
tion that is computed only when optimizing. If you don’t specify −O, you simply won’t get these
warnings.

If you want to warn about code which uses the uninitialized value of the variable in its own initializer,
use the−Winit−self option.

These warnings occur for individual uninitialized or clobbered elements of structure, union or array
variables as well as for variables which are uninitialized or clobbered as a whole.They do not occur
for variables or elements declaredvolatile . Because these warnings depend on optimization, the
exact variables or elements for which there are warnings will depend on the precise optimization
options and version ofGCCused.

Note that there may be no warning about a variable that is used only to compute a value that itself is
never used, because such computations may be deleted by data flow analysis before the warnings are
printed.

These warnings are made optional becauseGCC is not smart enough to see all the reasons why the
code might be correct despite appearing to have an error. Here is one example of how this can happen:

gcc-4.0.3 2006-04-20 26

GCC(1) GNU GCC(1)

{
int x;
switch (y)

{
case 1: x = 1;

break;
case 2: x = 4;

break;
case 3: x = 5;
}

foo (x);
}

If the value ofy is always 1, 2 or 3, thenx is always initialized, but GCC doesn’t know this. Hereis
another common case:

{
int save_y;
if (change_y) save_y = y, y = new_y;
...
if (change_y) y = save_y;

}

This has no bug becausesave_y is used only if it is set.

This option also warns when a non-volatile automatic variable might be changed by a call to
longjmp . These warnings as well are possible only in optimizing compilation.

The compiler sees only the calls tosetjmp . It cannot know wherelongjmp will be called; in fact,
a signal handler could call it at any point in the code. As a result, you may get a warning even when
there is in fact no problem becauselongjmp cannot in fact be called at the place which would cause
a problem.

Some spurious warnings can be avoided if you declare all the functions you use that never return as
noreturn .

This warning is enabled by−Wall .

−Wunknown−pragmas
Warn when a #pragma directive is encountered which is not understood byGCC. If this command line
option is used, warnings will even be issued for unknown pragmas in system header files. This is not
the case if the warnings were only enabled by the−Wall command line option.

−Wstrict−aliasing
This option is only active when−fstrict−aliasing is active. It warns about code which might break the
strict aliasing rules that the compiler is using for optimization. The warning does not catch all cases,
but does attempt to catch the more common pitfalls. It is included in−Wall .

−Wstrict−aliasing=2
This option is only active when−fstrict−aliasing is active. It warns about code which might break the
strict aliasing rules that the compiler is using for optimization. This warning catches more cases than
−Wstrict−aliasing, but it will also give a warning for some ambiguous cases that are safe.

−Wall
All of the above −W options combined. This enables all the warnings about constructions that some
users consider questionable, and that are easy to avoid (or modify to prevent the warning), even in con-
junction with macros.This also enables some language-specific warnings described inC++ Dialect
Options andObjective-C and Objective−C++ Dialect Options.

The following −W... options are not implied by−Wall . Some of them warn about constructions that users
generally do not consider questionable, but which occasionally you might wish to check for; others warn

gcc-4.0.3 2006-04-20 27

GCC(1) GNU GCC(1)

about constructions that are necessary or hard to avoid in some cases, and there is no simple way to modify
the code to suppress the warning.

−Wextra
(This option used to be called−W. The older name is still supported, but the newer name is more
descriptive.) Printextra warning messages for these events:

* A function can return either with or without a value. (Falling off the end of the function body is
considered returning without a value.) For example, this function would evoke such a warning:

foo (a)
{

if (a > 0)
return a;

}

* A n expression-statement or the left-hand side of a comma expression contains no side effects. To
suppress the warning, cast the unused expression to void. For example, an expression such as
x[i,j] will cause a warning, butx[(void)i,j] will not.

* A n unsigned value is compared against zero with< or >=.

* Storage-class specifiers like static are not the first things in a declaration. According to the C
Standard, this usage is obsolescent.

* I f −Wall or −Wunused is also specified, warn about unused arguments.

* A comparison between signed and unsigned values could produce an incorrect result when the
signed value is converted to unsigned. (But don’t warn if −Wno−sign−compareis also speci-
fied.)

* A n aggregate has an initializer which does not initialize all members. This warning can be inde-
pendently controlled by−Wmissing−field−initializers.

* A function parameter is declared without a type specifier in K&R−style functions:

void foo(bar) { }

* A n empty body occurs in anif or elsestatement.

* A pointer is compared against integer zero with<, <=, >, or >=.

* A variable might be changed bylongjmp or vfork .

* A ny of sev eral floating-point events that often indicate errors, such as overflow, underflow, loss of
precision, etc.

*<(C++only)>
An enumerator and a non-enumerator both appear in a conditional expression.

*<(C++only)>
A non-static reference or non-staticconstmember appears in a class without constructors.

*<(C++only)>
Ambiguous virtual bases.

*<(C++only)>
Subscripting an array which has been declaredregister.

*<(C++only)>
Taking the address of a variable which has been declaredregister.

*<(C++only)>
A base class is not initialized in a derived class’ copy constructor.

gcc-4.0.3 2006-04-20 28

GCC(1) GNU GCC(1)

−Wno−div−by−zero
Do not warn about compile-time integer division by zero. Floating point division by zero is not
warned about, as it can be a legitimate way of obtaining infinities and NaNs.

−Wsystem−headers
Print warning messages for constructs found in system header files.Warnings from system headers
are normally suppressed, on the assumption that they usually do not indicate real problems and would
only make the compiler output harder to read.Using this command line option tellsGCC to emit
warnings from system headers as if they occurred in user code.However, note that using−Wall in
conjunction with this option willnot warn about unknown pragmas in system headers−−−for that,
−Wunknown−pragmasmust also be used.

−Wfloat−equal
Warn if floating point values are used in equality comparisons.

The idea behind this is that sometimes it is convenient (for the programmer) to consider floating-point
values as approximations to infinitely precise real numbers. If you are doing this, then you need to
compute (by analyzing the code, or in some other way) the maximum or likely maximum error that the
computation introduces, and allow for it when performing comparisons (and when producing output,
but that’s a different problem). In particular, instead of testing for equality, you would check to see
whether the two values have ranges that overlap; and this is done with the relational operators, so
equality comparisons are probably mistaken.

−Wtraditional (C only)
Warn about certain constructs that behave differently in traditional andISO C. Alsowarn aboutISO C
constructs that have no traditional C equivalent, and/or problematic constructs which should be
avoided.

* M acro parameters that appear within string literals in the macro body. In traditional C macro
replacement takes place within string literals, but does not inISO C.

* I n traditional C, some preprocessor directives did not exist. Traditional preprocessors would only
consider a line to be a directive if the # appeared in column 1 on the line.Therefore−Wtradi-
tional warns about directives that traditional C understands but would ignore because the# does
not appear as the first character on the line. It also suggests you hide directives like #pragma not
understood by traditional C by indenting them.Some traditional implementations would not rec-
ognize#elif, so it suggests avoiding it altogether.

* A function-like macro that appears without arguments.

* The unary plus operator.

* TheU integer constant suffix, or theF or L floating point constant suffixes. (Traditional C does
support theL suffix on integer constants.) Note, these suffixes appear in macros defined in the
system headers of most modern systems, e.g. the_MIN /_MAX macros in<limits.h> . Use
of these macros in user code might normally lead to spurious warnings, however GCC’s integrated
preprocessor has enough context to avoid warning in these cases.

* A function declared external in one block and then used after the end of the block.

* A switch statement has an operand of typelong .

* A non−static function declaration follows astatic one. Thisconstruct is not accepted by
some traditional C compilers.

* The ISO type of an integer constant has a different width or signedness from its traditional type.
This warning is only issued if the base of the constant is ten. I.e. hexadecimal or octal values,
which typically represent bit patterns, are not warned about.

* Usage ofISO string concatenation is detected.

* I nitialization of automatic aggregates.

gcc-4.0.3 2006-04-20 29

GCC(1) GNU GCC(1)

* I dentifier conflicts with labels.Traditional C lacks a separate namespace for labels.

* I nitialization of unions.If the initializer is zero, the warning is omitted. This is done under the
assumption that the zero initializer in user code appears conditioned on e.g._ _STDC_ _ to avoid
missing initializer warnings and relies on default initialization to zero in the traditional C case.

* Conversions by prototypes between fixed/floating point values and vice versa. Theabsence of
these prototypes when compiling with traditional C would cause serious problems. This is a sub-
set of the possible conversion warnings, for the full set use−Wconversion.

* Use of ISO C style function definitions. This warning intentionally isnot issued for prototype
declarations or variadic functions because theseISO C features will appear in your code when
using libiberty’s traditional C compatibility macros,PARAMSand VPARAMS. This warning is
also bypassed for nested functions because that feature is already aGCC extension and thus not
relevant to traditional C compatibility.

−Wdeclaration−after−statement(C only)
Warn when a declaration is found after a statement in a block. This construct, known from C++, was
introduced withISO C99 and is by default allowed inGCC. It is not supported byISO C90 and was
not supported byGCCversions beforeGCC3.0.

−Wundef
Warn if an undefined identifier is evaluated in an#if directive.

−Wno−endif−labels
Do not warn whenever an #elseor an#endif are followed by text.

−Wshadow
Warn whenever a local variable shadows another local variable, parameter or global variable or when-
ev er a built-in function is shadowed.

−Wlarger−than−len
Warn whenever an object of larger thanlenbytes is defined.

−Wpointer−arith
Warn about anything that depends on the ‘‘size of’’ a function type or ofvoid . GNU C assigns these
types a size of 1, for convenience in calculations withvoid * pointers and pointers to functions.

−Wbad−function−cast(C only)
Warn whenever a function call is cast to a non-matching type.For example, warn ifint malloc()
is cast toanything * .

−Wcast−qual
Warn whenever a pointer is cast so as to remove a type qualifier from the target type.For example,
warn if aconst char * is cast to an ordinarychar * .

−Wcast−align
Warn whenever a pointer is cast such that the required alignment of the target is increased.For exam-
ple, warn if achar * is cast to anint * on machines where integers can only be accessed at two−
or four-byte boundaries.

−Wwrite−strings
When compiling C, give string constants the typeconst char[length] so that copying the
address of one into a non−const char * pointer will get a warning; when compiling C++, warn
about the deprecated conversion from string constants tochar * . These warnings will help you find
at compile time code that can try to write into a string constant, but only if you have been very careful
about usingconst in declarations and prototypes.Otherwise, it will just be a nuisance; this is why
we did not make−Wall request these warnings.

−Wconversion
Warn if a prototype causes a type conversion that is different from what would happen to the same
argument in the absence of a prototype.This includes conversions of fixed point to floating and vice
versa, and conversions changing the width or signedness of a fixed point argument except when the

gcc-4.0.3 2006-04-20 30

GCC(1) GNU GCC(1)

same as the default promotion.

Also, warn if a negative integer constant expression is implicitly converted to an unsigned type.For
example, warn about the assignmentx = −1 if x is unsigned. But do not warn about explicit casts
like (unsigned) −1 .

−Wsign−compare
Warn when a comparison between signed and unsigned values could produce an incorrect result when
the signed value is converted to unsigned. This warning is also enabled by−Wextra; to get the other
warnings of−Wextra without this warning, use−Wextra −Wno−sign−compare.

−Waggregate−return
Warn if any functions that return structures or unions are defined or called.(In languages where you
can return an array, this also elicits a warning.)

−Wstrict−prototypes (C only)
Warn if a function is declared or defined without specifying the argument types. (An old-style func-
tion definition is permitted without a warning if preceded by a declaration which specifies the argu-
ment types.)

−Wold−style−definition (C only)
Warn if an old-style function definition is used.A warning is given even if there is a previous proto-
type.

−Wmissing−prototypes(C only)
Warn if a global function is defined without a previous prototype declaration. This warning is issued
ev en if the definition itself provides a prototype.The aim is to detect global functions that fail to be
declared in header files.

−Wmissing−declarations(C only)
Warn if a global function is defined without a previous declaration. Do so even if the definition itself
provides a prototype. Use this option to detect global functions that are not declared in header files.

−Wmissing−field−initializers
Warn if a structure’s initializer has some fields missing.For example, the following code would cause
such a warning, becausex.h is implicitly zero:

struct s { int f, g, h; };
struct s x = { 3, 4 };

This option does not warn about designated initializers, so the following modification would not trig-
ger a warning:

struct s { int f, g, h; };
struct s x = { .f = 3, .g = 4 };

This warning is included in−Wextra. To get other−Wextra warnings without this one, use−Wextra
−Wno−missing−field−initializers.

−Wmissing−noreturn
Warn about functions which might be candidates for attributenoreturn . Note these are only possi-
ble candidates, not absolute ones. Care should be taken to manually verify functions actually do not
ev er return before adding thenoreturn attribute, otherwise subtle code generation bugs could be
introduced. You will not get a warning formain in hosted C environments.

−Wmissing−format−attribute
If −Wformat is enabled, also warn about functions which might be candidates forformat attributes.
Note these are only possible candidates, not absolute ones.GCC will guess thatformat attributes
might be appropriate for any function that calls a function like vprintf or vscanf , but this might
not always be the case, and some functions for whichformat attributes are appropriate may not be
detected. Thisoption has no effect unless−Wformat is enabled (possibly by−Wall).

gcc-4.0.3 2006-04-20 31

GCC(1) GNU GCC(1)

−Wno−multichar
Do not warn if a multicharacter constant (’FOOF’) is used. Usuallythey indicate a typo in the user’s
code, as they hav eimplementation-defined values, and should not be used in portable code.

−Wno−deprecated−declarations
Do not warn about uses of functions, variables, and types marked as deprecated by using thedepre-
cated attribute. (@pxref{FunctionAttributes}, @pxref {Variable Attributes}, @pxref {Type
Attributes}.)

−Wpacked
Warn if a structure is given the packed attribute, but the packed attribute has no effect on the layout or
size of the structure. Such structures may be mis-aligned for little benefit.For instance, in this code,
the variablef.x in struct bar will be misaligned even thoughstruct bar does not itself have
the packed attribute:

struct foo {
int x;
char a, b, c, d;

} _ _attribute__((packed));
struct bar {

char z;
struct foo f;

};

−Wpadded
Warn if padding is included in a structure, either to align an element of the structure or to align the
whole structure. Sometimes when this happens it is possible to rearrange the fields of the structure to
reduce the padding and so make the structure smaller.

−Wredundant−decls
Warn if anything is declared more than once in the same scope, even in cases where multiple declara-
tion is valid and changes nothing.

−Wnested−externs(C only)
Warn if anextern declaration is encountered within a function.

−Wunreachable−code
Warn if the compiler detects that code will never be executed.

This option is intended to warn when the compiler detects that at least a whole line of source code will
never be executed, because some condition is never satisfied or because it is after a procedure that
never returns.

It is possible for this option to produce a warning even though there are circumstances under which
part of the affected line can be executed, so care should be taken when removing apparently-unreach-
able code.

For instance, when a function is inlined, a warning may mean that the line is unreachable in only one
inlined copy of the function.

This option is not made part of−Wall because in a debugging version of a program there is often sub-
stantial code which checks correct functioning of the program and is, hopefully, unreachable because
the program does work. Anothercommon use of unreachable code is to provide behavior which is
selectable at compile−time.

−Winline
Warn if a function can not be inlined and it was declared as inline.Even with this option, the compiler
will not warn about failures to inline functions declared in system headers.

The compiler uses a variety of heuristics to determine whether or not to inline a function.For exam-
ple, the compiler takes into account the size of the function being inlined and the amount of inlining
that has already been done in the current function.Therefore, seemingly insignificant changes in the

gcc-4.0.3 2006-04-20 32

GCC(1) GNU GCC(1)

source program can cause the warnings produced by−Winline to appear or disappear.

−Wno−invalid−offsetof (C++only)
Suppress warnings from applying theoffsetof macro to a non-POD type. According to the 1998ISO
C++standard, applyingoffsetof to a non-POD type is undefined.In existing C++ implementations, how-
ev er, offsetof typically gives meaningful results even when applied to certain kinds of non-POD types.
(Such as a simplestruct that fails to be aPOD type only by virtue of having a constructor.) Thisflag
is for users who are aware that they are writing nonportable code and who have deliberately chosen to
ignore the warning about it.

The restrictions onoffsetofmay be relaxed in a future version of the C++standard.

−Winvalid−pch
Warn if a precompiled header is found in the search path but can’t be used.

−Wlong−long
Warn if long long type is used. This is default. To inhibit the warning messages, use
−Wno−long−long. Flags −Wlong−long and −Wno−long−long are taken into account only when
−pedanticflag is used.

−Wvariadic−macros
Warn if variadic macros are used in pedanticISO C90 mode, or theGNU alternate syntax when in
pedantic ISO C99 mode. This is default. To inhibit the warning messages, use−Wno−vari-
adic−macros.

−Wdisabled−optimization
Warn if a requested optimization pass is disabled. This warning does not generally indicate that there
is anything wrong with your code; it merely indicates thatGCC’s optimizers were unable to handle the
code effectively. Often, the problem is that your code is too big or too complex; GCC will refuse to
optimize programs when the optimization itself is likely to take inordinate amounts of time.

−Wno−pointer−sign
Don’t warn for pointer argument passing or assignment with different signedness. Only useful in the
negative form since this warning is enabled by default. Thisoption is only supported for C and Objec-
tive−C.

−Werror
Make all warnings into errors.

Options for Debugging Your Program orGCC

GCChas various special options that are used for debugging either your program orGCC:

−g Produce debugging information in the operating system’s native format (stabs,COFF, XCOFF, or
DWARF 2). GDB can work with this debugging information.

On most systems that use stabs format,−g enables use of extra debugging information that onlyGDB
can use; this extra information makes debugging work better inGDB but will probably make other
debuggers crash or refuse to read the program. If you want to control for certain whether to generate
the extra information, use−gstabs+, −gstabs, −gxcoff+, −gxcoff, or −gvms(see below).

GCCallows you to use−g with −O. The shortcuts taken by optimized code may occasionally produce
surprising results: some variables you declared may not exist at all; flow of control may briefly move
where you did not expect it; some statements may not be executed because they compute constant
results or their values were already at hand; some statements may execute in different places because
they were moved out of loops.

Nevertheless it proves possible to debug optimized output. This makes it reasonable to use the opti-
mizer for programs that might have bugs.

The following options are useful whenGCC is generated with the capability for more than one debug-
ging format.

gcc-4.0.3 2006-04-20 33

GCC(1) GNU GCC(1)

−ggdb
Produce debugging information for use byGDB. This means to use the most expressive format avail-
able (DWARF 2, stabs, or the native format if neither of those are supported), includingGDB exten-
sions if at all possible.

−gstabs
Produce debugging information in stabs format (if that is supported), withoutGDB extensions. Thisis
the format used byDBX on mostBSD systems. OnMIPS, Alpha and System V Release 4 systems this
option produces stabs debugging output which is not understood byDBX or SDB. On System V
Release 4 systems this option requires theGNU assembler.

−feliminate−unused−debug−symbols
Produce debugging information in stabs format (if that is supported), for only symbols that are actually
used.

−gstabs+
Produce debugging information in stabs format (if that is supported), usingGNU extensions under-
stood only by theGNU debugger (GDB). Theuse of these extensions is likely to make other debuggers
crash or refuse to read the program.

−gcoff
Produce debugging information inCOFFformat (if that is supported). This is the format used bySDB
on most System V systems prior to System V Release 4.

−gxcoff
Produce debugging information inXCOFF format (if that is supported).This is the format used by the
DBX debugger onIBM RS/6000systems.

−gxcoff+
Produce debugging information inXCOFF format (if that is supported), usingGNU extensions under-
stood only by theGNU debugger (GDB). Theuse of these extensions is likely to make other debuggers
crash or refuse to read the program, and may cause assemblers other than theGNU assembler (GAS) to
fail with an error.

−gdwarf−2
Produce debugging information inDWARF version 2 format (if that is supported).This is the format
used byDBX on IRIX 6. With this option,GCC uses features ofDWARF version 3 when they are use-
ful; version 3 is upward compatible with version 2, but may still cause problems for older debuggers.

−gvms
Produce debugging information inVMS debug format (if that is supported).This is the format used by
DEBUG on VMS systems.

−glevel
−ggdblevel
−gstabslevel
−gcofflevel
−gxcofflevel
−gvmslevel

Request debugging information and also uselevel to specify how much information. The default level
is 2.

Level 1 produces minimal information, enough for making backtraces in parts of the program that you
don’t plan to debug. Thisincludes descriptions of functions and external variables, but no information
about local variables and no line numbers.

Level 3 includes extra information, such as all the macro definitions present in the program.Some
debuggers support macro expansion when you use−g3.

−gdwarf−2 does not accept a concatenated debug level, becauseGCC used to support an option
−gdwarf that meant to generate debug information in version 1 of theDWARF format (which is very

gcc-4.0.3 2006-04-20 34

GCC(1) GNU GCC(1)

different from version 2), and it would have been too confusing. That debug format is long obsolete,
but the option cannot be changed now. Instead use an additional−glevel option to change the debug
level for DWARF2.

−feliminate−dwarf2−dups
CompressDWARF2 debugging information by eliminating duplicated information about each symbol.
This option only makes sense when generatingDWARF2 debugging information with−gdwarf−2.

−p Generate extra code to write profile information suitable for the analysis programprof . You must use
this option when compiling the source files you want data about, and you must also use it when link-
ing.

−pg
Generate extra code to write profile information suitable for the analysis programgprof. You must
use this option when compiling the source files you want data about, and you must also use it when
linking.

−Q Makes the compiler print out each function name as it is compiled, and print some statistics about each
pass when it finishes.

−ftime−report
Makes the compiler print some statistics about the time consumed by each pass when it finishes.

−fmem−report
Makes the compiler print some statistics about permanent memory allocation when it finishes.

−fprofile−arcs
Add code so that program flow arcs are instrumented. During execution the program records how
many times each branch and call is executed and how many times it is taken or returns. When the
compiled program exits it saves this data to a file calledauxname.gcdafor each source file. The data
may be used for profile-directed optimizations (−fbranch−probabilities), or for test coverage analysis
(−ftest−coverage). Eachobject file’s auxnameis generated from the name of the output file, if explic-
itly specified and it is not the final executable, otherwise it is the basename of the source file. In both
cases any suffix is removed (e.g.foo.gcdafor input filedir/foo.c, or dir/foo.gcdafor output file speci-
fied as−o dir/foo.o).

@bullet
Compile the source files with−fprofile−arcs plus optimization and code generation options.For
test coverage analysis, use the additional−ftest−coverage option. You do not need to profile
ev ery source file in a program.

@cvmmfu
Link your object files with−lgcovor −fprofile−arcs (the latter implies the former).

@dwnngv
Run the program on a representative workload to generate the arc profile information. This may
be repeated any number of times.You can run concurrent instances of your program, and pro-
vided that the file system supports locking, the data files will be correctly updated.Also fork
calls are detected and correctly handled (double counting will not happen).

@exoohw
For profile-directed optimizations, compile the source files again with the same optimization and
code generation options plus−fbranch−probabilities.

@fyppix
For test coverage analysis, usegcov to produce human readable information from the.gcnoand
.gcdafiles. Referto thegcovdocumentation for further information.

With −fprofile−arcs, for each function of your programGCCcreates a program flow graph, then finds
a spanning tree for the graph.Only arcs that are not on the spanning tree have to be instrumented: the
compiler adds code to count the number of times that these arcs are executed. Whenan arc is the only
exit or only entrance to a block, the instrumentation code can be added to the block; otherwise, a new

gcc-4.0.3 2006-04-20 35

GCC(1) GNU GCC(1)

basic block must be created to hold the instrumentation code.

−ftree−based−profiling
This option is used in addition to−fprofile−arcs or −fbranch−probabilities to control whether those
optimizations are performed on a tree-based or rtl-based internal representation.If you use this option
when compiling with−fprofile−arcs, you must also use it when compiling later with−fbranch−prob-
abilities. Currently the tree-based optimization is in an early stage of development, and this option is
recommended only for those people working on improving it.

−ftest−coverage
Produce a notes file that thegcov code-coverage utility can use to show program coverage. Each
source file’s note file is calledauxname.gcno. Refer to the−fprofile−arcs option above for a descrip-
tion of auxnameand instructions on how to generate test coverage data.Coverage data will match the
source files more closely, if you do not optimize.

−dletters
−fdump−rtl− pass

Says to make debugging dumps during compilation at times specified byletters. This is used for
debugging the RTL-based passes of the compiler. The file names for most of the dumps are made by
appending a pass number and a word to thedumpname. dumpnameis generated from the name of the
output file, if explicitly specified and it is not an executable, otherwise it is the basename of the source
file.

Most debug dumps can be enabled either passing a letter to the−d option, or with a long−fdump−rtl
switch; here are the possible letters for use inlettersandpass, and their meanings:

−dA
Annotate the assembler output with miscellaneous debugging information.

−db
−fdump−rtl−bp

Dump after computing branch probabilities, tofile.09.bp.

−dB
−fdump−rtl−bbro

Dump after block reordering, tofile.30.bbro.

−dc
−fdump−rtl−combine

Dump after instruction combination, to the filefile.17.combine.

−dC
−fdump−rtl−ce1
−fdump−rtl−ce2

−dC and −fdump−rtl−ce1 enable dumping after the first if conversion, to the filefile.11.ce1.
−dC and−fdump−rtl−ce2 enable dumping after the second if conversion, to the filefile.18.ce2.

−dd
−fdump−rtl−btl
−fdump−rtl−dbr

−dd and −fdump−rtl−btl enable dumping after branch target load optimization, tofile.31.btl.
−dd and−fdump−rtl−dbr enable dumping after delayed branch scheduling, tofile.36.dbr.

−dD
Dump all macro definitions, at the end of preprocessing, in addition to normal output.

−dE
−fdump−rtl−ce3

Dump after the third if conversion, tofile.28.ce3.

−df

gcc-4.0.3 2006-04-20 36

GCC(1) GNU GCC(1)

−fdump−rtl−cfg
−fdump−rtl−life

−df and−fdump−rtl−cfg enable dumping after control and data flow analysis, tofile.08.cfg. −df
and−fdump−rtl−cfg enable dumping dump after life analysis, tofile.16.life.

−dg
−fdump−rtl−greg

Dump after global register allocation, tofile.23.greg.

−dG
−fdump−rtl−gcse
−fdump−rtl−bypass

−dG and −fdump−rtl−gcse enable dumping afterGCSE, to file.05.gcse. −dG and
−fdump−rtl−bypass enable dumping after jump bypassing and control flow optimizations, to
file.07.bypass.

−dh
−fdump−rtl−eh

Dump after finalization ofEH handling code, tofile.02.eh.

−di
−fdump−rtl−sibling

Dump after sibling call optimizations, tofile.01.sibling.

−dj
−fdump−rtl−jump

Dump after the first jump optimization, tofile.03.jump.

−dk
−fdump−rtl−stack

Dump after conversion from registers to stack, tofile.33.stack.

−dl
−fdump−rtl−lreg

Dump after local register allocation, tofile.22.lreg.

−dL
−fdump−rtl−loop
−fdump−rtl−loop2

−dL and−fdump−rtl−loop enable dumping after the first loop optimization pass, tofile.06.loop.
−dL and−fdump−rtl−loop2 enable dumping after the second pass, tofile.13.loop2.

−dm
−fdump−rtl−sms

Dump after modulo scheduling, tofile.20.sms.

−dM
−fdump−rtl−mach

Dump after performing the machine dependent reorganization pass, tofile.35.mach.

−dn
−fdump−rtl−rnreg

Dump after register renumbering, tofile.29.rnreg.

−dN
−fdump−rtl−regmove

Dump after the register move pass, tofile.19.regmove.

−do
−fdump−rtl−postreload

Dump after post-reload optimizations, tofile.24.postreload.

gcc-4.0.3 2006-04-20 37

GCC(1) GNU GCC(1)

−dr
−fdump−rtl−expand

Dump afterRTL generation, tofile.00.expand.

−dR
−fdump−rtl−sched2

Dump after the second scheduling pass, tofile.32.sched2.

−ds
−fdump−rtl−cse

Dump afterCSE(including the jump optimization that sometimes followsCSE), tofile.04.cse.

−dS
−fdump−rtl−sched

Dump after the first scheduling pass, tofile.21.sched.

−dt
−fdump−rtl−cse2

Dump after the secondCSEpass (including the jump optimization that sometimes follows CSE),
to file.15.cse2.

−dT
−fdump−rtl−tracer

Dump after running tracer, to file.12.tracer.

−dV
−fdump−rtl−vpt
−fdump−rtl−vartrack

−dV and−fdump−rtl−vpt enable dumping after the value profile transformations, tofile.10.vpt.
−dV and−fdump−rtl−vartrack enable dumping after variable tracking, tofile.34.vartrack.

−dw
−fdump−rtl−flow2

Dump after the second flow pass, tofile.26.flow2.

−dz
−fdump−rtl−peephole2

Dump after the peephole pass, tofile.27.peephole2.

−dZ
−fdump−rtl−web

Dump after live range splitting, tofile.14.web.

−da
−fdump−rtl−all

Produce all the dumps listed above.

−dH
Produce a core dump whenever an error occurs.

−dm
Print statistics on memory usage, at the end of the run, to standard error.

−dp
Annotate the assembler output with a comment indicating which pattern and alternative was used.
The length of each instruction is also printed.

−dP
Dump theRTL in the assembler output as a comment before each instruction.Also turns on−dp
annotation.

gcc-4.0.3 2006-04-20 38

GCC(1) GNU GCC(1)

−dv
For each of the other indicated dump files (either with−d or −fdump−rtl− pass), dump a repre-
sentation of the control flow graph suitable for viewing withVCG to file.pass.vcg.

−dx
Just generateRTL for a function instead of compiling it. Usually used with r
(−fdump−rtl−expand).

−dy
Dump debugging information during parsing, to standard error.

−fdump−unnumbered
When doing debugging dumps (see−d option above), suppress instruction numbers and line number
note output. This makes it more feasible to use diff on debugging dumps for compiler invocations
with different options, in particular with and without−g.

−fdump−translation−unit (C and C++only)
−fdump−translation−unit− options(C and C++only)

Dump a representation of the tree structure for the entire translation unit to a file.The file name is
made by appending.tu to the source file name. If the−options form is used,optionscontrols the
details of the dump as described for the−fdump−tree options.

−fdump−class−hierarchy(C++only)
−fdump−class−hierarchy−options(C++only)

Dump a representation of each class’s hierarchy and virtual function table layout to a file. The file
name is made by appending.classto the source file name. If the−optionsform is used,optionscon-
trols the details of the dump as described for the−fdump−tree options.

−fdump−ipa−switch
Control the dumping at various stages of inter-procedural analysis language tree to a file. The file
name is generated by appending a switch specific suffix to the source file name. The following dumps
are possible:

all Enables all inter-procedural analysis dumps; currently the only produced dump is thecgraph
dump.

cgraph
Dumps information about call-graph optimization, unused function removal, and inlining deci-
sions.

−fdump−tree−switch
−fdump−tree−switch−options

Control the dumping at various stages of processing the intermediate language tree to a file. The file
name is generated by appending a switch specific suffix to the source file name. If the−optionsform
is used,optionsis a list of− separated options that control the details of the dump. Not all options are
applicable to all dumps, those which are not meaningful will be ignored. The following options are
available

address
Print the address of each node. Usually this is not meaningful as it changes according to the envi-
ronment and source file. Its primary use is for tying up a dump file with a debug environment.

slim
Inhibit dumping of members of a scope or body of a function merely because that scope has been
reached. Onlydump such items when they are directly reachable by some other path.When
dumping pretty-printed trees, this option inhibits dumping the bodies of control structures.

raw
Print a raw representation of the tree.By default, trees are pretty-printed into a C−like represen-
tation.

gcc-4.0.3 2006-04-20 39

GCC(1) GNU GCC(1)

details
Enable more detailed dumps (not honored by every dump option).

stats
Enable dumping various statistics about the pass (not honored by every dump option).

blocks
Enable showing basic block boundaries (disabled in raw dumps).

vops
Enable showing virtual operands for every statement.

lineno
Enable showing line numbers for statements.

uid Enable showing the uniqueID (DECL_UID) for each variable.

all Turn on all options, exceptraw, slim andlineno.

The following tree dumps are possible:

original
Dump before any tree based optimization, tofile.original.

optimized
Dump after all tree based optimization, tofile.optimized.

inlined
Dump after function inlining, tofile.inlined.

gimple
Dump each function before and after the gimplification pass to a file.The file name is made by
appending.gimpleto the source file name.

cfg Dump the control flow graph of each function to a file.The file name is made by appending.cfg
to the source file name.

vcg Dump the control flow graph of each function to a file inVCG format. Thefile name is made by
appending.vcg to the source file name. Note that if the file contains more than one function, the
generated file cannot be used directly byVCG. You will need to cut and paste each function’s
graph into its own separate file first.

ch Dump each function after copying loop headers. The file name is made by appending.ch to the
source file name.

ssa Dump SSA related information to a file. The file name is made by appending.ssato the source
file name.

alias
Dump aliasing information for each function.The file name is made by appending.alias to the
source file name.

ccp Dump each function afterCCP. The file name is made by appending.ccpto the source file name.

pre Dump trees after partial redundancy elimination. Thefile name is made by appending.pre to the
source file name.

fre Dump trees after full redundancy elimination. Thefile name is made by appending.fre to the
source file name.

dce Dump each function after dead code elimination. The file name is made by appending.dceto the
source file name.

mudflap
Dump each function after adding mudflap instrumentation. The file name is made by appending
.mudflapto the source file name.

gcc-4.0.3 2006-04-20 40

GCC(1) GNU GCC(1)

sra Dump each function after performing scalar replacement of aggregates. Thefile name is made by
appending.sra to the source file name.

dom
Dump each function after applying dominator tree optimizations. The file name is made by
appending.domto the source file name.

dse Dump each function after applying dead store elimination.The file name is made by appending
.dseto the source file name.

phiopt
Dump each function after optimizingPHI nodes into straightline code. The file name is made by
appending.phioptto the source file name.

forwprop
Dump each function after forward propagating single use variables. Thefile name is made by
appending.forwpropto the source file name.

copyrename
Dump each function after applying the copy rename optimization. The file name is made by
appending.copyrenameto the source file name.

nrv Dump each function after applying the named return value optimization on generic trees.The file
name is made by appending.nrv to the source file name.

vect
Dump each function after applying vectorization of loops.The file name is made by appending
.vectto the source file name.

all Enable all the available tree dumps with the flags provided in this option.

−ftree−vectorizer−verbose=n
This option controls the amount of debugging output the vectorizer prints. This information is written
to standard error, unless−fdump−tree−all or −fdump−tree−vect is specified, in which case it is out-
put to the usual dump listing file,.vect.

−frandom−seed=string
This option provides a seed thatGCCuses when it would otherwise use random numbers.It is used to
generate certain symbol names that have to be different in every compiled file. It is also used to place
unique stamps in coverage data files and the object files that produce them.You can use the−fran-
dom−seedoption to produce reproducibly identical object files.

Thestringshould be different for every file you compile.

−fsched−verbose=n
On targets that use instruction scheduling, this option controls the amount of debugging output the
scheduler prints. This information is written to standard error, unless−dS or −dR is specified, in
which case it is output to the usual dump listing file,.schedor .sched2respectively. Howev er for n
greater than nine, the output is always printed to standard error.

For n greater than zero,−fsched−verboseoutputs the same information as−dRS. For n greater than
one, it also output basic block probabilities, detailed ready list information and unit/insn info.For n
greater than two, it includesRTL at abort point, control-flow and regions info. And forn over four,
−fsched−verbosealso includes dependence info.

−save−temps
Store the usual ‘‘temporary’’ i ntermediate files permanently; place them in the current directory and
name them based on the source file. Thus, compilingfoo.cwith −c −save−tempswould produce files
foo.i andfoo.s, as well asfoo.o. This creates a preprocessedfoo.i output file even though the compiler
now normally uses an integrated preprocessor.

When used in combination with the−x command line option,−save−temps is sensible enough to
avoid over writing an input source file with the same extension as an intermediate file.The

gcc-4.0.3 2006-04-20 41

GCC(1) GNU GCC(1)

corresponding intermediate file may be obtained by renaming the source file before using
−save−temps.

−time
Report theCPU time taken by each subprocess in the compilation sequence.For C source files, this is
the compiler proper and assembler (plus the linker if linking is done). The output looks like this:

c c1 0.12 0.01
as 0 .00 0.01

The first number on each line is the ‘‘user time’’, that is time spent executing the program itself.The
second number is ‘‘system time’’, time spent executing operating system routines on behalf of the pro-
gram. Bothnumbers are in seconds.

−fvar−tracking
Run variable tracking pass.It computes where variables are stored at each position in code.Better
debugging information is then generated (if the debugging information format supports this informa-
tion).

It is enabled by default when compiling with optimization (−Os, −O, −O2, ...), debugging information
(−g) and the debug info format supports it.

−print−file−name=library
Print the full absolute name of the library filelibrary that would be used when linking−−−and don’t do
anything else.With this option,GCCdoes not compile or link anything; it just prints the file name.

−print−multi−directory
Print the directory name corresponding to the multilib selected by any other switches present in the
command line. This directory is supposed to exist inGCC_EXEC_PREFIX.

−print−multi−lib
Print the mapping from multilib directory names to compiler switches that enable them.The directory
name is separated from the switches by;, and each switch starts with an@} instead of the@samp{−,
without spaces between multiple switches. This is supposed to ease shell−processing.

−print−prog−name=program
Like −print−file−name, but searches for a program such ascpp.

−print−libgcc−file−name
Same as−print−file−name=libgcc.a.

This is useful when you use−nostdlib or −nodefaultlibs but you do want to link withlibgcc.a. You
can do

gcc −nostdlib <files>... ‘gcc −print−libgcc−file−name‘

−print−search−dirs
Print the name of the configured installation directory and a list of program and library directoriesgcc
will search−−−and don’t do anything else.

This is useful whengcc prints the error messageinstallation problem, cannot exec cpp0: No such
file or dir ectory. To resolve this you either need to putcpp0 and the other compiler components
wheregcc expects to find them, or you can set the environment variableGCC_EXEC_PREFIX to the
directory where you installed them. Don’t forget the trailing/.

−dumpmachine
Print the compiler’s target machine (for example,i686−pc−linux−gnu)−−−and don’t do anything else.

−dumpversion
Print the compiler version (for example,3.0)−−−and don’t do anything else.

−dumpspecs
Print the compiler’s built-in specs−−−and don’t do anything else. (This is used whenGCC itself is
being built.)

gcc-4.0.3 2006-04-20 42

GCC(1) GNU GCC(1)

−feliminate−unused−debug−types
Normally, when producingDWARF2 output, GCC will emit debugging information for all types
declared in a compilation unit, regardless of whether or not they are actually used in that compilation
unit. Sometimesthis is useful, such as if, in the debugger, you want to cast a value to a type that is not
actually used in your program (but is declared). More often, however, this results in a significant
amount of wasted space.With this option,GCC will avoid producing debug symbol output for types
that are nowhere used in the source file being compiled.

Options That Control Optimization

These options control various sorts of optimizations.

Without any optimization option, the compiler’s goal is to reduce the cost of compilation and to make
debugging produce the expected results. Statements are independent: if you stop the program with a break-
point between statements, you can then assign a new value to any variable or change the program counter to
any other statement in the function and get exactly the results you would expect from the source code.

Turning on optimization flags makes the compiler attempt to improve the performance and/or code size at
the expense of compilation time and possibly the ability to debug the program.

The compiler performs optimization based on the knowledge it has of the program. Optimization levels
−O2 and above, in particular, enableunit-at-a-timemode, which allows the compiler to consider informa-
tion gained from later functions in the file when compiling a function. Compiling multiple files at once to a
single output file inunit-at-a-timemode allows the compiler to use information gained from all of the files
when compiling each of them.

Not all optimizations are controlled directly by a flag. Only optimizations that have a flag are listed.

−O
−O1

Optimize. Optimizingcompilation takes somewhat more time, and a lot more memory for a large
function.

With −O, the compiler tries to reduce code size and execution time, without performing any optimiza-
tions that take a great deal of compilation time.

−O turns on the following optimization flags: −fdefer−pop −fdelayed−branch
−fguess−branch−probability −fcpr op−registers −floop−optimize −fif−conversion −fif−conver-
sion2 −ftree−ccp −ftree−dce −ftree−dominator−opts −ftree−dse −ftree−ter −ftree−lrs −ftree−sra
−ftree−copyrename −ftree−fre −ftree−ch −fmerge−constants

−O also turns on−fomit−frame−pointer on machines where doing so does not interfere with debug-
ging.

−O doesn’t turn on−ftree−sra for the Ada compiler. This option must be explicitly specified on the
command line to be enabled for the Ada compiler.

−O2
Optimize even more. GCC performs nearly all supported optimizations that do not involve a space-
speed tradeoff. The compiler does not perform loop unrolling or function inlining when you specify
−O2. As compared to−O, this option increases both compilation time and the performance of the
generated code.

−O2 turns on all optimization flags specified by−O. It also turns on the following optimization flags:
−fthr ead−jumps −fcrossjumping −foptimize−sibling−calls −fcse−follow−jumps
−fcse−skip−blocks −fgcse −fgcse−lm −fexpensive−optimizations −fstrength−reduce −fre-
run−cse−after−loop −frerun−loop−opt −fcaller−saves −ffor ce−mem −fpeephole2 −fsched-
ule−insns −fschedule−insns2 −fsched−interblock −fsched−spec−fregmove −fstrict−aliasing
−fdelete−null−pointer−checks −freorder−blocks −freorder−functions −funit−at−a−time
−falign−functions −falign−jumps −falign−loops −falign−labels−ftree−pre

Please note the warning under−fgcseabout invoking −O2 on programs that use computed gotos.

gcc-4.0.3 2006-04-20 43

GCC(1) GNU GCC(1)

−O3
Optimize yet more.−O3 turns on all optimizations specified by−O2 and also turns on the−fin-
line−functions, −funswitch−loopsand−fgcse−after−reloadoptions.

−O0
Do not optimize. This is the default.

−Os
Optimize for size.−Os enables all−O2 optimizations that do not typically increase code size.It also
performs further optimizations designed to reduce code size.

−Os disables the following optimization flags:−falign−functions −falign−jumps −falign−loops
−falign−labels −freorder−blocks −freorder−blocks−and−partition −fprefetch−loop−arrays

If you use multiple−O options, with or without level numbers, the last such option is the one that is
effective.

Options of the form−fflag specify machine-independent flags. Most flags have both positive and negative
forms; the negative form of −ffoo would be −fno−foo. In the table below, only one of the forms is
listed−−−the one you typically will use.You can figure out the other form by either removing no− or
adding it.

The following options control specific optimizations.They are either activated by−O options or are related
to ones that are.You can use the following flags in the rare cases when ‘‘fine−tuning’’ of optimizations to
be performed is desired.

−fno−default−inline
Do not make member functions inline by default merely because they are defined inside the class
scope (C++ only). Otherwise,when you specify−O, member functions defined inside class scope are
compiled inline by default; i.e., you don’t need to addinline in front of the member function name.

−fno−defer−pop
Always pop the arguments to each function call as soon as that function returns.For machines which
must pop arguments after a function call, the compiler normally lets arguments accumulate on the
stack for several function calls and pops them all at once.

Disabled at levels −O, −O2, −O3, −Os.

−fforce−mem
Force memory operands to be copied into registers before doing arithmetic on them.This produces
better code by making all memory references potential common subexpressions. Whenthey are not
common subexpressions, instruction combination should eliminate the separate register−load.

Enabled at levels −O2, −O3, −Os.

−fforce−addr
Force memory address constants to be copied into registers before doing arithmetic on them.This
may produce better code just as−fforce−memmay.

−fomit−frame−pointer
Don’t keep the frame pointer in a register for functions that don’t need one. This avoids the instruc-
tions to save, set up and restore frame pointers; it also makes an extra register available in many func-
tions. It also makes debugging impossible on some machines.

On some machines, such as theVAX, this flag has no effect, because the standard calling sequence
automatically handles the frame pointer and nothing is saved by pretending it doesn’t exist. The
machine-description macroFRAME_POINTER_REQUIREDcontrols whether a target machine sup-
ports this flag.

Enabled at levels −O, −O2, −O3, −Os.

gcc-4.0.3 2006-04-20 44

GCC(1) GNU GCC(1)

−foptimize−sibling−calls
Optimize sibling and tail recursive calls.

Enabled at levels −O2, −O3, −Os.

−fno−inline
Don’t pay attention to theinline keyword. Normallythis option is used to keep the compiler from
expanding any functions inline. Note that if you are not optimizing, no functions can be expanded
inline.

−finline−functions
Integrate all simple functions into their callers. The compiler heuristically decides which functions are
simple enough to be worth integrating in this way.

If all calls to a given function are integrated, and the function is declaredstatic , then the function is
normally not output as assembler code in its own right.

Enabled at level −O3.

−finline−functions−called−once
Consider allstatic functions called once for inlining into their caller even if they are not marked
inline . If a call to a given function is integrated, then the function is not output as assembler code
in its own right.

Enabled if−funit−at−a−time is enabled.

−finline−limit= n
By default, GCC limits the size of functions that can be inlined. This flag allows the control of this
limit for functions that are explicitly marked as inline (i.e., marked with the inline keyword or defined
within the class definition in c++).n is the size of functions that can be inlined in number of pseudo
instructions (not counting parameter handling). The default value ofn is 600. Increasing this value
can result in more inlined code at the cost of compilation time and memory consumption.Decreasing
usually makes the compilation faster and less code will be inlined (which presumably means slower
programs). Thisoption is particularly useful for programs that use inlining heavily such as those
based on recursive templates with C++.

Inlining is actually controlled by a number of parameters, which may be specified individually by
using−−param name=value. The−finline−limit= n option sets some of these parameters as follows:

@item max−inline−insns−single
is set to I<n>/2.

@item max−inline−insns−auto
is set to I<n>/2.

@item min−inline−insns
is set to 130 or I<n>/4, whichever is smaller.

@item max−inline−insns−rtl
is set to I<n>.

See below for a documentation of the individual parameters controlling inlining.

Note: pseudo instruction represents, in this particular context, an abstract measurement of function’s
size. Inno way, it represents a count of assembly instructions and as such its exact meaning might
change from one release to an another.

−fkeep−inline−functions
In C, emitstatic functions that are declaredinline into the object file, even if the function has
been inlined into all of its callers. This switch does not affect functions using theextern inline
extension inGNU C. InC++, emit any and all inline functions into the object file.

−fkeep−static−consts
Emit variables declaredstatic const when optimization isn’t turned on, even if the variables
aren’t referenced.

gcc-4.0.3 2006-04-20 45

GCC(1) GNU GCC(1)

GCCenables this option by default. If you want to force the compiler to check if the variable was ref-
erenced, regardless of whether or not optimization is turned on, use the−fno−keep−static−consts
option.

−fmerge−constants
Attempt to merge identical constants (string constants and floating point constants) across compilation
units.

This option is the default for optimized compilation if the assembler and linker support it.Use
−fno−merge−constantsto inhibit this behavior.

Enabled at levels −O, −O2, −O3, −Os.

−fmerge−all−constants
Attempt to merge identical constants and identical variables.

This option implies−fmerge−constants. In addition to −fmerge−constantsthis considers e.g. even
constant initialized arrays or initialized constant variables with integral or floating point types.Lan-
guages like C or C++ require each non-automatic variable to have distinct location, so using this option
will result in non-conforming behavior.

−fmodulo−sched
Perform swing modulo scheduling immediately before the first scheduling pass.This pass looks at
innermost loops and reorders their instructions by overlapping different iterations.

−fno−branch−count−reg
Do not use ‘‘decrement and branch’’ i nstructions on a count register, but instead generate a sequence
of instructions that decrement a register, compare it against zero, then branch based upon the result.
This option is only meaningful on architectures that support such instructions, which include x86,
PowerPC,IA−64 and S/390.

The default is−fbranch−count−reg, enabled when−fstrength−reduceis enabled.

−fno−function−cse
Do not put function addresses in registers; make each instruction that calls a constant function contain
the function’s address explicitly.

This option results in less efficient code, but some strange hacks that alter the assembler output may be
confused by the optimizations performed when this option is not used.

The default is−ffunction−cse

−fno−zero−initialized−in−bss
If the target supports aBSSsection,GCCby default puts variables that are initialized to zero intoBSS.
This can save space in the resulting code.

This option turns off this behavior because some programs explicitly rely on variables going to the
data section.E.g., so that the resulting executable can find the beginning of that section and/or make
assumptions based on that.

The default is−fzero−initialized−in−bss.

−fbounds−check
For front-ends that support it, generate additional code to check that indices used to access arrays are
within the declared range. This is currently only supported by the Java and Fortran front−ends, where
this option defaults to true and false respectively.

−fmudflap −fmudflapth −fmudflapir
For front-ends that support it (C and C++), instrument all risky pointer/array dereferencing operations,
some standard library string/heap functions, and some other associated constructs with range/validity
tests. Modulesso instrumented should be immune to buffer overflows, invalid heap use, and some
other classes of C/C++ programming errors. The instrumentation relies on a separate runtime library
(libmudflap), which will be linked into a program if−fmudflap is given at link time. Run-time

gcc-4.0.3 2006-04-20 46

GCC(1) GNU GCC(1)

behavior of the instrumented program is controlled by theMUDFLAP_OPTIONS environment vari-
able. Seeenv MUDFLAP_OPTIONS=−help a.out for its options.

Use −fmudflapth instead of−fmudflap to compile and to link if your program is multi−threaded.
Use−fmudflapir , in addition to−fmudflap or −fmudflapth , if i nstrumentation should ignore pointer
reads. Thisproduces less instrumentation (and therefore faster execution) and still provides some pro-
tection against outright memory corrupting writes, but allows erroneously read data to propagate
within a program.

−fstrength−reduce
Perform the optimizations of loop strength reduction and elimination of iteration variables.

Enabled at levels −O2, −O3, −Os.

−fthread−jumps
Perform optimizations where we check to see if a jump branches to a location where another compari-
son subsumed by the first is found. If so, the first branch is redirected to either the destination of the
second branch or a point immediately following it, depending on whether the condition is known to be
true or false.

Enabled at levels −O2, −O3, −Os.

−fcse−follow−jumps
In common subexpression elimination, scan through jump instructions when the target of the jump is
not reached by any other path. For example, whenCSE encounters anif statement with anelse
clause,CSEwill follo w the jump when the condition tested is false.

Enabled at levels −O2, −O3, −Os.

−fcse−skip−blocks
This is similar to−fcse−follow−jumps, but causesCSEto follow jumps which conditionally skip over
blocks. WhenCSEencounters a simpleif statement with no else clause,−fcse−skip−blockscauses
CSEto follow the jump around the body of theif .

Enabled at levels −O2, −O3, −Os.

−frerun−cse−after−loop
Re-run common subexpression elimination after loop optimizations has been performed.

Enabled at levels −O2, −O3, −Os.

−frerun−loop−opt
Run the loop optimizer twice.

Enabled at levels −O2, −O3, −Os.

−fgcse
Perform a global common subexpression elimination pass. This pass also performs global constant
and copy propagation.

Note:When compiling a program using computed gotos, aGCCextension, you may get better runtime
performance if you disable the global common subexpression elimination pass by adding−fno−gcse
to the command line.

Enabled at levels −O2, −O3, −Os.

−fgcse−lm
When −fgcse−lm is enabled, global common subexpression elimination will attempt to move loads
which are only killed by stores into themselves. Thisallows a loop containing a load/store sequence to
be changed to a load outside the loop, and a copy/store within the loop.

Enabled by default when gcse is enabled.

gcc-4.0.3 2006-04-20 47

GCC(1) GNU GCC(1)

−fgcse−sm
When−fgcse−smis enabled, a store motion pass is run after global common subexpression elimina-
tion. Thispass will attempt to move stores out of loops. When used in conjunction with−fgcse−lm,
loops containing a load/store sequence can be changed to a load before the loop and a store after the
loop.

Not enabled at any optimization level.

−fgcse−las
When−fgcse−lasis enabled, the global common subexpression elimination pass eliminates redundant
loads that come after stores to the same memory location (both partial and full redundancies).

Not enabled at any optimization level.

−fgcse−after−reload
When−fgcse−after−reloadis enabled, a redundant load elimination pass is performed after reload.
The purpose of this pass is to cleanup redundant spilling.

−floop−optimize
Perform loop optimizations: move constant expressions out of loops, simplify exit test conditions and
optionally do strength-reduction as well.

Enabled at levels −O, −O2, −O3, −Os.

−floop−optimize2
Perform loop optimizations using the new loop optimizer. The optimizations (loop unrolling, peeling
and unswitching, loop invariant motion) are enabled by separate flags.

−fcrossjumping
Perform cross-jumping transformation. This transformation unifies equivalent code and save code
size. Theresulting code may or may not perform better than without cross−jumping.

Enabled at levels −O2, −O3, −Os.

−fif−conversion
Attempt to transform conditional jumps into branch-less equivalents. Thisinclude use of conditional
moves, min, max, set flags and abs instructions, and some tricks doable by standard arithmetics.The
use of conditional execution on chips where it is available is controlled byif−conversion2 .

Enabled at levels −O, −O2, −O3, −Os.

−fif−conversion2
Use conditional execution (where available) to transform conditional jumps into branch-less equiv-
alents.

Enabled at levels −O, −O2, −O3, −Os.

−fdelete−null−pointer−checks
Use global dataflow analysis to identify and eliminate useless checks for null pointers. The compiler
assumes that dereferencing a null pointer would have halted the program. If a pointer is checked after
it has already been dereferenced, it cannot be null.

In some environments, this assumption is not true, and programs can safely dereference null pointers.
Use −fno−delete−null−pointer−checksto disable this optimization for programs which depend on
that behavior.

Enabled at levels −O2, −O3, −Os.

−fexpensive−optimizations
Perform a number of minor optimizations that are relatively expensive.

Enabled at levels −O2, −O3, −Os.

gcc-4.0.3 2006-04-20 48

GCC(1) GNU GCC(1)

−foptimize−register−move
−fregmove

Attempt to reassign register numbers in move instructions and as operands of other simple instructions
in order to maximize the amount of register tying.This is especially helpful on machines with two-
operand instructions.

Note−fregmoveand−foptimize−register−moveare the same optimization.

Enabled at levels −O2, −O3, −Os.

−fdelayed−branch
If supported for the target machine, attempt to reorder instructions to exploit instruction slots available
after delayed branch instructions.

Enabled at levels −O, −O2, −O3, −Os.

−fschedule−insns
If supported for the target machine, attempt to reorder instructions to eliminate execution stalls due to
required data being unavailable. Thishelps machines that have slow floating point or memory load
instructions by allowing other instructions to be issued until the result of the load or floating point
instruction is required.

Enabled at levels −O2, −O3, −Os.

−fschedule−insns2
Similar to −fschedule−insns, but requests an additional pass of instruction scheduling after register
allocation has been done.This is especially useful on machines with a relatively small number of reg-
isters and where memory load instructions take more than one cycle.

Enabled at levels −O2, −O3, −Os.

−fno−sched−interblock
Don’t schedule instructions across basic blocks. This is normally enabled by default when scheduling
before register allocation, i.e. with−fschedule−insnsor at−O2 or higher.

−fno−sched−spec
Don’t allow speculative motion of non-load instructions. This is normally enabled by default when
scheduling before register allocation, i.e. with−fschedule−insnsor at−O2 or higher.

−fsched−spec−load
Allow speculative motion of some load instructions.This only makes sense when scheduling before
register allocation, i.e. with−fschedule−insnsor at−O2 or higher.

−fsched−spec−load−dangerous
Allow speculative motion of more load instructions. This only makes sense when scheduling before
register allocation, i.e. with−fschedule−insnsor at−O2 or higher.

−fsched−stalled−insns=n
Define how many insns (if any) can be moved prematurely from the queue of stalled insns into the
ready list, during the second scheduling pass.

−fsched−stalled−insns−dep=n
Define how many insn groups (cycles) will be examined for a dependency on a stalled insn that is can-
didate for premature removal f rom the queue of stalled insns.Has an effect only during the second
scheduling pass, and only if−fsched−stalled−insnsis used and its value is not zero.

−fsched2−use−superblocks
When scheduling after register allocation, do use superblock scheduling algorithm.Superblock
scheduling allows motion across basic block boundaries resulting on faster schedules. This option is
experimental, as not all machine descriptions used byGCC model theCPU closely enough to avoid
unreliable results from the algorithm.

This only makes sense when scheduling after register allocation, i.e. with−fschedule−insns2or at

gcc-4.0.3 2006-04-20 49

GCC(1) GNU GCC(1)

−O2 or higher.

−fsched2−use−traces
Use−fsched2−use−superblocksalgorithm when scheduling after register allocation and additionally
perform code duplication in order to increase the size of superblocks using tracer pass.See−ftracer
for details on trace formation.

This mode should produce faster but significantly longer programs.Also without −fbranch−proba-
bilities the traces constructed may not match the reality and hurt the performance. This only makes
sense when scheduling after register allocation, i.e. with−fschedule−insns2or at−O2 or higher.

−freschedule−modulo−scheduled−loops
The modulo scheduling comes before the traditional scheduling, if a loop was modulo scheduled we
may want to prevent the later scheduling passes from changing its schedule, we use this option to con-
trol that.

−fcaller−saves
Enable values to be allocated in registers that will be clobbered by function calls, by emitting extra
instructions to save and restore the registers around such calls.Such allocation is done only when it
seems to result in better code than would otherwise be produced.

This option is always enabled by default on certain machines, usually those which have no call-pre-
served registers to use instead.

Enabled at levels −O2, −O3, −Os.

−ftree−pre
Perform Partial Redundancy Elimination (PRE) on trees. Thisflag is enabled by default at−O2 and
−O3.

−ftree−fre
Perform Full Redundancy Elimination (FRE) on trees. Thedifference betweenFRE and PRE is that
FRE only considers expressions that are computed on all paths leading to the redundant computation.
This analysis faster thanPRE, though it exposes fewer redundancies. This flag is enabled by default at
−O and higher.

−ftree−ccp
Perform sparse conditional constant propagation (CCP) on trees. Thisflag is enabled by default at−O
and higher.

−ftree−dce
Perform dead code elimination (DCE) on trees. Thisflag is enabled by default at−O and higher.

−ftree−dominator−opts
Perform a variety of simple scalar cleanups (constant/copy propagation, redundancy elimination, range
propagation and expression simplification) based on a dominator tree traversal. Thisalso performs
jump threading (to reduce jumps to jumps). This flag is enabled by default at−O and higher.

−ftree−ch
Perform loop header copying on trees. This is beneficial since it increases effectiveness of code
motion optimizations. It also saves one jump. This flag is enabled by default at−O and higher. It is
not enabled for−Os, since it usually increases code size.

−ftree−loop−optimize
Perform loop optimizations on trees. This flag is enabled by default at−O and higher.

−ftree−loop−linear
Perform linear loop transformations on tree.This flag can improve cache performance and allow fur-
ther loop optimizations to take place.

−ftree−loop−im
Perform loop invariant motion on trees. This pass moves only invariants that would be hard to handle
at RTL level (function calls, operations that expand to nontrivial sequences of insns).With

gcc-4.0.3 2006-04-20 50

GCC(1) GNU GCC(1)

−funswitch−loops it also moves operands of conditions that are invariant out of the loop, so that we
can use just trivial invariantness analysis in loop unswitching. The pass also includes store motion.

−ftree−loop−ivcanon
Create a canonical counter for number of iterations in the loop for that determining number of itera-
tions requires complicated analysis.Later optimizations then may determine the number easily. Use-
ful especially in connection with unrolling.

−fivopts
Perform induction variable optimizations (strength reduction, induction variable merging and induc-
tion variable elimination) on trees.

−ftree−sra
Perform scalar replacement of aggregates. Thispass replaces structure references with scalars to pre-
vent committing structures to memory too early. This flag is enabled by default at−O and higher.

−ftree−copyrename
Perform copy renaming on trees.This pass attempts to rename compiler temporaries to other variables
at copy locations, usually resulting in variable names which more closely resemble the original vari-
ables. Thisflag is enabled by default at−O and higher.

−ftree−ter
Perform temporary expression replacement during theSSA−>normal phase. Single use/single def tem-
poraries are replaced at their use location with their defining expression. Thisresults in non-GIMPLE
code, but gives the expanders much more complex trees to work on resulting in betterRTL generation.
This is enabled by default at−O and higher.

−ftree−lrs
Perform live range splitting during theSSA−>normal phase.Distinct live ranges of a variable are split
into unique variables, allowing for better optimization later. This is enabled by default at −O and
higher.

−ftree−vectorize
Perform loop vectorization on trees.

−ftracer
Perform tail duplication to enlarge superblock size.This transformation simplifies the control flow of
the function allowing other optimizations to do better job.

−funroll−loops
Unroll loops whose number of iterations can be determined at compile time or upon entry to the loop.
−funroll−loops implies both−fstrength−reduce and −frerun−cse−after−loop. This option makes
code larger, and may or may not make it run faster.

−funroll−all−loops
Unroll all loops, even if their number of iterations is uncertain when the loop is entered. This usually
makes programs run more slowly.−funroll−all−loops implies the same options as−funroll−loops,

−fsplit−ivs−in−unroller
Enables expressing of values of induction variables in later iterations of the unrolled loop using the
value in the first iteration. This breaks long dependency chains, thus improving efficiency of the
scheduling passes (for best results,−fweb should be used as well).

Combination of−fweb and CSE is often sufficient to obtain the same effect. However in cases the
loop body is more complicated than a single basic block, this is not reliable.It also does not work at
all on some of the architectures due to restrictions in theCSEpass.

This optimization is enabled by default.

−fvariable−expansion−in−unroller
With this option, the compiler will create multiple copies of some local variables when unrolling a
loop which can result in superior code.

gcc-4.0.3 2006-04-20 51

GCC(1) GNU GCC(1)

−fprefetch−loop−arrays
If supported by the target machine, generate instructions to prefetch memory to improve the perfor-
mance of loops that access large arrays.

These options may generate better or worse code; results are highly dependent on the structure of
loops within the source code.

−fno−peephole
−fno−peephole2

Disable any machine-specific peephole optimizations. The difference between−fno−peepholeand
−fno−peephole2is in how they are implemented in the compiler; some targets use one, some use the
other, a few use both.

−fpeepholeis enabled by default.−fpeephole2enabled at levels −O2, −O3, −Os.

−fno−guess−branch−probability
Do not guess branch probabilities using heuristics.

GCC will use heuristics to guess branch probabilities if they are not provided by profiling feedback
(−fprofile−arcs). Theseheuristics are based on the control flow graph. If some branch probabilities
are specified by_ _builtin_expect, then the heuristics will be used to guess branch probabilities for the
rest of the control flow graph, taking the_ _builtin_expect info into account. The interactions
between the heuristics and_ _builtin_expect can be complex, and in some cases, it may be useful to
disable the heuristics so that the effects of_ _builtin_expect are easier to understand.

The default is−fguess−branch−probabilityat levels −O, −O2, −O3, −Os.

−freorder−blocks
Reorder basic blocks in the compiled function in order to reduce number of taken branches and
improve code locality.

Enabled at levels −O2, −O3.

−freorder−blocks−and−partition
In addition to reordering basic blocks in the compiled function, in order to reduce number of taken
branches, partitions hot and cold basic blocks into separate sections of the assembly and .o files, to
improve paging and cache locality performance.

This optimization is automatically turned off in the presence of exception handling, for linkonce sec-
tions, for functions with a user-defined section attribute and on any architecture that does not support
named sections.

−freorder−functions
Reorder functions in the object file in order to improve code locality. This is implemented by using
special subsections.text.hot for most frequently executed functions and.text.unlikely for
unlikely executed functions. Reordering is done by the linker so object file format must support
named sections and linker must place them in a reasonable way.

Also profile feedback must be available in to make this option effective. See −fprofile−arcs for
details.

Enabled at levels −O2, −O3, −Os.

−fstrict−aliasing
Allows the compiler to assume the strictest aliasing rules applicable to the language being compiled.
For C (and C++), this activates optimizations based on the type of expressions. Inparticular, an object
of one type is assumed never to reside at the same address as an object of a different type, unless the
types are almost the same.For example, anunsigned int can alias anint , but not avoid* or a
double . A character type may alias any other type.

Pay special attention to code like this:

gcc-4.0.3 2006-04-20 52

GCC(1) GNU GCC(1)

union a_union {
int i;
double d;

};

int f() {
a_union t;
t.d = 3.0;
return t.i;

}

The practice of reading from a different union member than the one most recently written to (called
‘‘ type−punning’’) is common. Even with −fstrict−aliasing, type-punning is allowed, provided the
memory is accessed through the union type.So, the code above will work as expected. However, this
code might not:

int f() {
a_union t;
int* ip;
t.d = 3.0;
ip = &t.i;
return *ip;

}

Every language that wishes to perform language-specific alias analysis should define a function that
computes, given an tree node, an alias set for the node. Nodes in different alias sets are not allowed
to alias. For an example, see the C front-end functionc_get_alias_set .

Enabled at levels −O2, −O3, −Os.

−falign−functions
−falign−functions=n

Align the start of functions to the next power-of-two greater thann, skipping up ton bytes. For
instance,−falign−functions=32 aligns functions to the next 32−byte boundary, but −falign−func-
tions=24 would align to the next 32−byte boundary only if this can be done by skipping 23 bytes or
less.

−fno−align−functions and −falign−functions=1 are equivalent and mean that functions will not be
aligned.

Some assemblers only support this flag whenn is a power of two; in that case, it is rounded up.

If n is not specified or is zero, use a machine-dependent default.

Enabled at levels −O2, −O3.

−falign−labels
−falign−labels=n

Align all branch targets to a power-of-two boundary, skipping up ton bytes like −falign−functions.
This option can easily make code slower, because it must insert dummy operations for when the
branch target is reached in the usual flow of the code.

−fno−align−labelsand−falign−labels=1are equivalent and mean that labels will not be aligned.

If −falign−loopsor −falign−jumps are applicable and are greater than this value, then their values are
used instead.

If n is not specified or is zero, use a machine-dependent default which is very likely to be1, meaning
no alignment.

Enabled at levels −O2, −O3.

gcc-4.0.3 2006-04-20 53

GCC(1) GNU GCC(1)

−falign−loops
−falign−loops=n

Align loops to a power-of-two boundary, skipping up ton bytes like −falign−functions. The hope is
that the loop will be executed many times, which will make up for any execution of the dummy opera-
tions.

−fno−align−loopsand−falign−loops=1are equivalent and mean that loops will not be aligned.

If n is not specified or is zero, use a machine-dependent default.

Enabled at levels −O2, −O3.

−falign−jumps
−falign−jumps=n

Align branch targets to a power-of-two boundary, for branch targets where the targets can only be
reached by jumping, skipping up ton bytes like −falign−functions. In this case, no dummy opera-
tions need be executed.

−fno−align−jumps and−falign−jumps=1 are equivalent and mean that loops will not be aligned.

If n is not specified or is zero, use a machine-dependent default.

Enabled at levels −O2, −O3.

−funit−at−a−time
Parse the whole compilation unit before starting to produce code. This allows some extra optimiza-
tions to take place but consumes more memory (in general).There are some compatibility issues with
unit-at-at-timemode:

* enablingunit-at-a-timemode may change the order in which functions, variables, and top-level
asm statements are emitted, and will likely break code relying on some particular ordering.The
majority of such top-level asm statements, though, can be replaced bysection attributes.

* unit-at-a-timemode removes unreferenced static variables and functions are removed. Thismay
result in undefined references when anasm statement refers directly to variables or functions that
are otherwise unused. In that case either the variable/function shall be listed as an operand of the
asm statement operand or, in the case of top-level asm statements the attribute used shall be
used on the declaration.

* Static functions now can use non-standard passing conventions that may breakasm statements
calling functions directly. Again, attributeused will prevent this behavior.

As a temporary workaround,−fno−unit−at−a−time can be used, but this scheme may not be sup-
ported by future releases ofGCC.

Enabled at levels −O2, −O3.

−fweb
Constructs webs as commonly used for register allocation purposes and assign each web individual
pseudo register. This allows the register allocation pass to operate on pseudos directly, but also
strengthens several other optimization passes, such asCSE, loop optimizer and trivial dead code
remover. It can, however, make debugging impossible, since variables will no longer stay in a ‘‘home
register’’.

Enabled at levels −O2, −O3, −Os, on targets where the default format for debugging information sup-
ports variable tracking.

−fno−cprop−registers
After register allocation and post-register allocation instruction splitting, we perform a copy-propaga-
tion pass to try to reduce scheduling dependencies and occasionally eliminate the copy.

Disabled at levels −O, −O2, −O3, −Os.

gcc-4.0.3 2006-04-20 54

GCC(1) GNU GCC(1)

−fprofile−generate
Enable options usually used for instrumenting application to produce profile useful for later recompila-
tion with profile feedback based optimization.You must use−fprofile−generateboth when compiling
and when linking your program.

The following options are enabled:−fprofile−arcs , −fprofile−values , −fvpt .

−fprofile−use
Enable profile feedback directed optimizations, and optimizations generally profitable only with pro-
file feedback available.

The following options are enabled:−fbranch−probabilities , −fvpt , −funroll−loops ,
−fpeel−loops , −ftracer .

The following options control compiler behavior regarding floating point arithmetic. These options trade
off between speed and correctness. All must be specifically enabled.

−ffloat−store
Do not store floating point variables in registers, and inhibit other options that might change whether a
floating point value is taken from a register or memory.

This option prevents undesirable excess precision on machines such as the 68000 where the floating
registers (of the 68881) keep more precision than adouble is supposed to have. Similarly for the
x86 architecture.For most programs, the excess precision does only good, but a few programs rely on
the precise definition ofIEEE floating point. Use −ffloat−store for such programs, after modifying
them to store all pertinent intermediate computations into variables.

−ffast−math
Sets −fno−math−errno, −funsafe−math−optimizations, −fno−trapping−math, −ffi-
nite−math−only, −fno−rounding−math, −fno−signaling−nansandfcx-limited-range.

This option causes the preprocessor macro_ _FAST_MATH_ _ to be defined.

This option should never be turned on by any −O option since it can result in incorrect output for pro-
grams which depend on an exact implementation ofIEEE or ISO rules/specifications for math func-
tions.

−fno−math−errno
Do not setERRNOafter calling math functions that are executed with a single instruction, e.g., sqrt.A
program that relies onIEEE exceptions for math error handling may want to use this flag for speed
while maintainingIEEE arithmetic compatibility.

This option should never be turned on by any −O option since it can result in incorrect output for pro-
grams which depend on an exact implementation ofIEEE or ISO rules/specifications for math func-
tions.

The default is−fmath−errno.

−funsafe−math−optimizations
Allow optimizations for floating-point arithmetic that (a) assume that arguments and results are valid
and (b) may violateIEEE or ANSI standards. Whenused at link−time, it may include libraries or
startup files that change the defaultFPUcontrol word or other similar optimizations.

This option should never be turned on by any −O option since it can result in incorrect output for pro-
grams which depend on an exact implementation ofIEEE or ISO rules/specifications for math func-
tions.

The default is−fno−unsafe−math−optimizations.

−ffinite−math−only
Allow optimizations for floating-point arithmetic that assume that arguments and results are not NaNs
or +−Infs.

This option should never be turned on by any −O option since it can result in incorrect output for

gcc-4.0.3 2006-04-20 55

GCC(1) GNU GCC(1)

programs which depend on an exact implementation ofIEEE or ISO rules/specifications.

The default is−fno−finite−math−only.

−fno−trapping−math
Compile code assuming that floating-point operations cannot generate user-visible traps. These traps
include division by zero, overflow, underflow, inexact result and invalid operation.This option implies
−fno−signaling−nans. Setting this option may allow faster code if one relies on ‘‘non−stop’’ IEEE
arithmetic, for example.

This option should never be turned on by any −O option since it can result in incorrect output for pro-
grams which depend on an exact implementation ofIEEE or ISO rules/specifications for math func-
tions.

The default is−ftrapping−math .

−frounding−math
Disable transformations and optimizations that assume default floating point rounding behavior. This
is round-to-zero for all floating point to integer conversions, and round-to-nearest for all other arith-
metic truncations.This option should be specified for programs that change theFP rounding mode
dynamically, or that may be executed with a non-default rounding mode.This option disables constant
folding of floating point expressions at compile-time (which may be affected by rounding mode) and
arithmetic transformations that are unsafe in the presence of sign-dependent rounding modes.

The default is−fno−rounding−math.

This option is experimental and does not currently guarantee to disable allGCC optimizations that are
affected by rounding mode.Future versions ofGCC may provide finer control of this setting using
C99’sFENV_ACCESSpragma. Thiscommand line option will be used to specify the default state for
FENV_ACCESS.

−fsignaling−nans
Compile code assuming thatIEEE signaling NaNs may generate user-visible traps during floating-
point operations. Setting this option disables optimizations that may change the number of exceptions
visible with signaling NaNs. This option implies−ftrapping−math .

This option causes the preprocessor macro_ _SUPPORT_SNAN_ _to be defined.

The default is−fno−signaling−nans.

This option is experimental and does not currently guarantee to disable allGCC optimizations that
affect signaling NaN behavior.

−fsingle−precision−constant
Treat floating point constant as single precision constant instead of implicitly converting it to double
precision constant.

−fcx−limited−range
−fno−cx−limited−range

When enabled, this option states that a range reduction step is not needed when performing complex
division. Thedefault is−fno−cx−limited−range, but is enabled by−ffast−math.

This option controls the default setting of theISO C99CX_LIMITED_RANGEpragma. Nevertheless,
the option applies to all languages.

The following options control optimizations that may improve performance, but are not enabled by any −O
options. Thissection includes experimental options that may produce broken code.

−fbranch−probabilities
After running a program compiled with−fprofile−arcs, you can compile it a second time using
−fbranch−probabilities, to improve optimizations based on the number of times each branch was
taken. Whenthe program compiled with−fprofile−arcs exits it saves arc execution counts to a file
calledsourcename.gcdafor each source fileThe information in this data file is very dependent on the

gcc-4.0.3 2006-04-20 56

GCC(1) GNU GCC(1)

structure of the generated code, so you must use the same source code and the same optimization
options for both compilations.

With −fbranch−probabilities, GCC puts a REG_BR_PROB note on eachJUMP_INSN and
CALL_INSN . These can be used to improve optimization. Currently, they are only used in one place:
in reorg.c, instead of guessing which path a branch is mostly to take, theREG_BR_PROB values are
used to exactly determine which path is taken more often.

−fprofile−values
If combined with−fprofile−arcs, it adds code so that some data about values of expressions in the
program is gathered.

With −fbranch−probabilities, it reads back the data gathered from profiling values of expressions and
addsREG_VALUE_PROFILE notes to instructions for their later usage in optimizations.

Enabled with−fprofile−generateand−fprofile−use.

−fvpt
If combined with−fprofile−arcs, it instructs the compiler to add a code to gather information about
values of expressions.

With −fbranch−probabilities, it reads back the data gathered and actually performs the optimizations
based on them. Currently the optimizations include specialization of division operation using the
knowledge about the value of the denominator.

−fspeculative−prefetching
If combined with−fprofile−arcs, it instructs the compiler to add a code to gather information about
addresses of memory references in the program.

With −fbranch−probabilities, it reads back the data gathered and issues prefetch instructions accord-
ing to them.In addition to the opportunities noticed by−fprefetch−loop−arrays, it also notices more
complicated memory access patterns−−−for example accesses to the data stored in linked list whose
elements are usually allocated sequentially.

In order to prevent issuing double prefetches, usage of−fspeculative−prefetching implies
−fno−prefetch−loop−arrays.

Enabled with−fprofile−generateand−fprofile−use.

−frename−registers
Attempt to avoid false dependencies in scheduled code by making use of registers left over after regis-
ter allocation. This optimization will most benefit processors with lots of registers. Dependingon the
debug information format adopted by the target, however, it can make debugging impossible, since
variables will no longer stay in a ‘‘home register’’.

Not enabled by default at any lev el because it has known bugs.

−ftracer
Perform tail duplication to enlarge superblock size.This transformation simplifies the control flow of
the function allowing other optimizations to do better job.

Enabled with−fprofile−use.

−funroll−loops
Unroll loops whose number of iterations can be determined at compile time or upon entry to the loop.
−funroll−loops implies −frerun−cse−after−loop. It also turns on complete loop peeling (i.e. com-
plete removal of loops with small constant number of iterations). This option makes code larger, and
may or may not make it run faster.

Enabled with−fprofile−use.

−funroll−all−loops
Unroll all loops, even if their number of iterations is uncertain when the loop is entered.This usually
makes programs run more slowly.−funroll−all−loops implies the same options as−funroll−loops.

gcc-4.0.3 2006-04-20 57

GCC(1) GNU GCC(1)

−fpeel−loops
Peels the loops for that there is enough information that they do not roll much (from profile feedback).
It also turns on complete loop peeling (i.e. complete removal of loops with small constant number of
iterations).

Enabled with−fprofile−use.

−fmove−loop−invariants
Enables the loop invariant motion pass in the new loop optimizer. Enabled at level −O1

−funswitch−loops
Move branches with loop invariant conditions out of the loop, with duplicates of the loop on both
branches (modified according to result of the condition).

−fprefetch−loop−arrays
If supported by the target machine, generate instructions to prefetch memory to improve the perfor-
mance of loops that access large arrays.

Disabled at level −Os.

−ffunction−sections
−fdata−sections

Place each function or data item into its own section in the output file if the target supports arbitrary
sections. Thename of the function or the name of the data item determines the section’s name in the
output file.

Use these options on systems where the linker can perform optimizations to improve locality of refer-
ence in the instruction space. Most systems using theELF object format andSPARCprocessors run-
ning Solaris 2 have linkers with such optimizations.AIX may have these optimizations in the future.

Only use these options when there are significant benefits from doing so.When you specify these
options, the assembler and linker will create larger object and executable files and will also be slower.
You will not be able to usegprof on all systems if you specify this option and you may have prob-
lems with debugging if you specify both this option and−g.

−fbranch−target−load−optimize
Perform branch target register load optimization before prologue / epilogue threading. The use of tar-
get registers can typically be exposed only during reload, thus hoisting loads out of loops and doing
inter-block scheduling needs a separate optimization pass.

−fbranch−target−load−optimize2
Perform branch target register load optimization after prologue / epilogue threading.

−fbtr−bb−exclusive
When performing branch target register load optimization, don’t reuse branch target registers in within
any basic block.

−−param name=value
In some places,GCC uses various constants to control the amount of optimization that is done.For
example,GCC will not inline functions that contain more that a certain number of instructions.You
can control some of these constants on the command-line using the−−param option.

The names of specific parameters, and the meaning of the values, are tied to the internals of the com-
piler, and are subject to change without notice in future releases.

In each case, thevalueis an integer. The allowable choices fornameare given in the following table:

sra-max-structure-size
The maximum structure size, in bytes, at which the scalar replacement of aggregates (SRA) opti-
mization will perform block copies. The default value, 0, implies thatGCC will select the most
appropriate size itself.

gcc-4.0.3 2006-04-20 58

GCC(1) GNU GCC(1)

sra-field-structure-ratio
The threshold ratio (as a percentage) between instantiated fields and the complete structure size.
We say that if the ratio of the number of bytes in instantiated fields to the number of bytes in the
complete structure exceeds this parameter, then block copies are not used. The default is 75.

max-crossjump-edges
The maximum number of incoming edges to consider for crossjumping. The algorithm used by
−fcrossjumping is O(Nˆ2) in the number of edges incoming to each block. Increasing values
mean more aggressive optimization, making the compile time increase with probably small
improvement in executable size.

min-crossjump-insns
The minimum number of instructions which must be matched at the end of two blocks before
crossjumping will be performed on them.This value is ignored in the case where all instructions
in the block being crossjumped from are matched. The default value is 5.

max-goto-duplication-insns
The maximum number of instructions to duplicate to a block that jumps to a computed goto.To
avoid O(Nˆ2) behavior in a number of passes,GCC factors computed gotos early in the compila-
tion process, and unfactors them as late as possible. Only computed jumps at the end of a basic
blocks with no more than max-goto-duplication-insns are unfactored. Thedefault value is 8.

max-delay-slot-insn-search
The maximum number of instructions to consider when looking for an instruction to fill a delay
slot. If more than this arbitrary number of instructions is searched, the time savings from filling
the delay slot will be minimal so stop searching. Increasing values mean more aggressive opti-
mization, making the compile time increase with probably small improvement in executable run
time.

max-delay-slot-live-search
When trying to fill delay slots, the maximum number of instructions to consider when searching
for a block with valid live register information. Increasing this arbitrarily chosen value means
more aggressive optimization, increasing the compile time. This parameter should be removed
when the delay slot code is rewritten to maintain the control-flow graph.

max-gcse-memory
The approximate maximum amount of memory that will be allocated in order to perform the
global common subexpression elimination optimization. If more memory than specified is
required, the optimization will not be done.

max-gcse-passes
The maximum number of passes ofGCSEto run. The default is 1.

max-pending-list-length
The maximum number of pending dependencies scheduling will allow before flushing the current
state and starting over. Large functions with few branches or calls can create excessively large
lists which needlessly consume memory and resources.

max-inline-insns-single
Several parameters control the tree inliner used in gcc.This number sets the maximum number
of instructions (counted inGCC’s internal representation) in a single function that the tree inliner
will consider for inlining. This only affects functions declared inline and methods implemented
in a class declaration (C++). Thedefault value is 450.

max-inline-insns-auto
When you use−finline−functions (included in−O3), a lot of functions that would otherwise not
be considered for inlining by the compiler will be investigated. To those functions, a different
(more restrictive) limit compared to functions declared inline can be applied. The default value is
90.

gcc-4.0.3 2006-04-20 59

GCC(1) GNU GCC(1)

large-function-insns
The limit specifying really large functions.For functions larger than this limit after inlining inlin-
ing is constrained by−−param large-function-growth. This parameter is useful primarily to
avoid extreme compilation time caused by non-linear algorithms used by the backend. This
parameter is ignored when−funit−at−a−time is not used. The default value is 2700.

large-function-growth
Specifies maximal growth of large function caused by inlining in percents. This parameter is
ignored when−funit−at−a−time is not used. The default value is 100 which limits large func-
tion growth to 2.0 times the original size.

inline-unit-gr owth
Specifies maximal overall growth of the compilation unit caused by inlining. This parameter is
ignored when−funit−at−a−time is not used. The default value is 50 which limits unit growth to
1.5 times the original size.

max-inline-insns-recursive
max-inline-insns-recursive-auto

Specifies maximum number of instructions out-of-line copy of self recursive inline function can
grow into by performing recursive inlining.

For functions declared inline−−param max-inline-insns-recursive is taken into acount.For
function not declared inline, recursive inlining happens only when−finline−functions (included
in −O3) is enabled and−−param max-inline-insns-recursive-auto is used. The default value is
450.

max-inline-recursive-depth
max-inline-recursive-depth-auto

Specifies maximum recursion depth used by the recursive inlining.

For functions declared inline−−param max-inline-recursive-depth is taken into acount.For
function not declared inline, recursive inlining happens only when−finline−functions (included
in −O3) is enabled and−−param max-inline-recursive-depth-auto is used. The default value is
450.

inline-call-cost
Specify cost of call instruction relative to simple arithmetics operations (having cost of 1).
Increasing this cost disqualify inlinining of non-leaf functions and at same time increase size of
leaf function that is believed to reduce function size by being inlined. In effect it increase amount
of inlining for code having large abstraction penalty (many functions that just pass the argumetns
to other functions) and decrease inlining for code with low abstraction penalty. Default value is
16.

max-unrolled-insns
The maximum number of instructions that a loop should have if that loop is unrolled, and if the
loop is unrolled, it determines how many times the loop code is unrolled.

max-average-unrolled-insns
The maximum number of instructions biased by probabilities of their execution that a loop should
have if that loop is unrolled, and if the loop is unrolled, it determines how many times the loop
code is unrolled.

max-unroll-times
The maximum number of unrollings of a single loop.

max-peeled-insns
The maximum number of instructions that a loop should have if that loop is peeled, and if the
loop is peeled, it determines how many times the loop code is peeled.

gcc-4.0.3 2006-04-20 60

GCC(1) GNU GCC(1)

max-peel-times
The maximum number of peelings of a single loop.

max-completely-peeled-insns
The maximum number of insns of a completely peeled loop.

max-completely-peel-times
The maximum number of iterations of a loop to be suitable for complete peeling.

max-unswitch-insns
The maximum number of insns of an unswitched loop.

max-unswitch-level
The maximum number of branches unswitched in a single loop.

lim-expensive
The minimum cost of an expensive expression in the loop invariant motion.

iv-consider-all-candidates-bound
Bound on number of candidates for induction variables below that all candidates are considered
for each use in induction variable optimizations.Only the most relevant candidates are consid-
ered if there are more candidates, to avoid quadratic time complexity.

iv-max-considered-uses
The induction variable optimizations give up on loops that contain more induction variable uses.

iv-always-prune-cand-set-bound
If number of candidates in the set is smaller than this value, we always try to remove unnecessary
ivs from the set during its optimization when a new iv is added to the set.

scev-max-expr-size
Bound on size of expressions used in the scalar evolutions analyzer. Large expressions slow the
analyzer.

max-iterations-to-track
The maximum number of iterations of a loop the brute force algorithm for analysis of # of itera-
tions of the loop tries to evaluate.

hot-bb-count-fraction
Select fraction of the maximal count of repetitions of basic block in program given basic block
needs to have to be considered hot.

hot-bb-frequency-fraction
Select fraction of the maximal frequency of executions of basic block in function given basic
block needs to have to be considered hot

tracer-dynamic-coverage
tracer-dynamic-coverage-feedback

This value is used to limit superblock formation once the given percentage of executed instruc-
tions is covered. Thislimits unnecessary code size expansion.

The tracer-dynamic-coverage-feedbackis used only when profile feedback is available. The
real profiles (as opposed to statically estimated ones) are much less balanced allowing the thresh-
old to be larger value.

tracer-max-code-growth
Stop tail duplication once code growth has reached given percentage. Thisis rather hokey argu-
ment, as most of the duplicates will be eliminated later in cross jumping, so it may be set to much
higher values than is the desired code growth.

tracer-min-branch-ratio
Stop reverse growth when the reverse probability of best edge is less than this threshold (in per-
cent).

gcc-4.0.3 2006-04-20 61

GCC(1) GNU GCC(1)

tracer-min-branch-ratio
tracer-min-branch-ratio-feedback

Stop forward growth if the best edge do have probability lower than this threshold.

Similarly to tracer-dynamic-coverage two values are present, one for compilation for profile
feedback and one for compilation without. The value for compilation with profile feedback needs
to be more conservative (higher) in order to make tracer effective.

max-cse-path-length
Maximum number of basic blocks on path that cse considers. The default is 10.

global-var-threshold
Counts the number of function calls (n) and the number of call-clobbered variables (v). If nxv is
larger than this limit, a single artificial variable will be created to represent all the call-clobbered
variables at function call sites. This artificial variable will then be made to alias every call-clob-
bered variable. (doneasint * size_t on the host machine; beware overflow).

max-aliased-vops
Maximum number of virtual operands allowed to represent aliases before triggering the alias
grouping heuristic.Alias grouping reduces compile times and memory consumption needed for
aliasing at the expense of precision loss in alias information.

ggc-min-expand
GCCuses a garbage collector to manage its own memory allocation. This parameter specifies the
minimum percentage by which the garbage collector’s heap should be allowed to expand between
collections. Tuning this may improve compilation speed; it has no effect on code generation.

The default is 30% + 70% * (RAM/1GB) with an upper bound of 100% whenRAM >= 1GB. If
getrlimit is available, the notion of ‘‘RAM’’ i s the smallest of actualRAM and
RLIMIT_DATA or RLIMIT_AS . If GCC is not able to calculateRAM on a particular platform,
the lower bound of 30% is used.Setting this parameter andggc-min-heapsizeto zero causes a
full collection to occur at every opportunity. This is extremely slow, but can be useful for debug-
ging.

ggc-min-heapsize
Minimum size of the garbage collector’s heap before it begins bothering to collect garbage. The
first collection occurs after the heap expands byggc-min-expand% beyond ggc-min-heapsize.
Again, tuning this may improve compilation speed, and has no effect on code generation.

The default is the smaller ofRAM/8, RLIMIT_RSS, or a limit which tries to ensure that
RLIMIT_DAT A or RLIMIT_AS are not exceeded, but with a lower bound of 4096 (four megabytes)
and an upper bound of 131072 (128 megabytes). IfGCC is not able to calculateRAM on a partic-
ular platform, the lower bound is used. Setting this parameter very large effectively disables
garbage collection. Setting this parameter andggc-min-expandto zero causes a full collection to
occur at every opportunity.

max-reload-search-insns
The maximum number of instruction reload should look backward for equivalent register.
Increasing values mean more aggressive optimization, making the compile time increase with
probably slightly better performance. The default value is 100.

max-cselib-memory-location
The maximum number of memory locations cselib should take into acount. Increasing values
mean more aggressive optimization, making the compile time increase with probably slightly bet-
ter performance. The default value is 500.

reorder-blocks-duplicate
reorder-blocks-duplicate-feedback

Used by basic block reordering pass to decide whether to use unconditional branch or duplicate
the code on its destination. Code is duplicated when its estimated size is smaller than this value
multiplied by the estimated size of unconditional jump in the hot spots of the program.

gcc-4.0.3 2006-04-20 62

GCC(1) GNU GCC(1)

The reorder-block-duplicate-feedbackis used only when profile feedback is available and may
be set to higher values thanreorder-block-duplicate since information about the hot spots is
more accurate.

max-sched-region-blocks
The maximum number of blocks in a region to be considered for interblock scheduling.The
default value is 10.

max-sched-region-insns
The maximum number of insns in a region to be considered for interblock scheduling.The
default value is 100.

max-last-value-rtl
The maximum size measured as number of RTLs that can be recorded in an expression in com-
biner for a pseudo register as last known value of that register. The default is 10000.

integer-share-limit
Small integer constants can use a shared data structure, reducing the compiler’s memory usage
and increasing its speed. This sets the maximum value of a shared integer constant’s. Thedefault
value is 256.

Options Controlling the Preprocessor

These options control the C preprocessor, which is run on each C source file before actual compilation.

If you use the−E option, nothing is done except preprocessing. Some of these options make sense only
together with−E because they cause the preprocessor output to be unsuitable for actual compilation.

You can use−Wp,option to bypass the compiler driver and passoptiondirectly through to the prepro-
cessor. If option contains commas, it is split into multiple options at the commas.However, many
options are modified, translated or interpreted by the compiler driver before being passed to the pre-
processor, and −Wp forcibly bypasses this phase. The preprocessor’s direct interface is undocu-
mented and subject to change, so whenever possible you should avoid using−Wp and let the driver
handle the options instead.

−Xpreprocessoroption
Passoptionas an option to the preprocessor. You can use this to supply system-specific preprocessor
options whichGCCdoes not know how to recognize.

If you want to pass an option that takes an argument, you must use−Xpreprocessor twice, once for
the option and once for the argument.

−D name
Predefinenameas a macro, with definition1.

−D name=definition
The contents ofdefinition are tokenized and processed as if they appeared during translation phase
three in a#definedirective. In particular, the definition will be truncated by embedded newline char-
acters.

If you are invoking the preprocessor from a shell or shell-like program you may need to use the shell’s
quoting syntax to protect characters such as spaces that have a meaning in the shell syntax.

If you wish to define a function-like macro on the command line, write its argument list with surround-
ing parentheses before the equals sign (if any). Parentheses are meaningful to most shells, so you will
need to quote the option.With shandcsh, −D’name(args...)=definition’ works.

−D and−U options are processed in the order they are given on the command line.All −imacros file
and−include file options are processed after all−D and−U options.

−U name
Cancel any previous definition ofname, either built in or provided with a−D option.

gcc-4.0.3 2006-04-20 63

GCC(1) GNU GCC(1)

−undef
Do not predefine any system-specific or GCC-specific macros.The standard predefined macros
remain defined.

−I dir
Add the directorydir to the list of directories to be searched for header files. Directories named by−I
are searched before the standard system include directories. If the directorydir is a standard system
include directory, the option is ignored to ensure that the default search order for system directories
and the special treatment of system headers are not defeated .

−o file
Write output tofile. This is the same as specifyingfile as the second non-option argument tocpp. gcc
has a different interpretation of a second non-option argument, so you must use−o to specify the out-
put file.

−Wall
Turns on all optional warnings which are desirable for normal code. At present this is−Wcomment,
−Wtrigraphs , −Wmultichar and a warning about integer promotion causing a change of sign in#if
expressions. Notethat many of the preprocessor’s warnings are on by default and have no options to
control them.

−Wcomment
−Wcomments

Warn whenever a comment-start sequence/* appears in a/* comment, or whenever a backslash-new-
line appears in a// comment. (Bothforms have the same effect.)

−Wtrigraphs
@anchor{Wtrigraphs} Most trigraphs in comments cannot affect the meaning of the program.How-
ev er, a trigraph that would form an escaped newline (??/ at the end of a line) can, by changing where
the comment begins or ends. Therefore, only trigraphs that would form escaped newlines produce
warnings inside a comment.

This option is implied by−Wall . If −Wall is not given, this option is still enabled unless trigraphs are
enabled. To get trigraph conversion without warnings, but get the other−Wall warnings, use−tri-
graphs −Wall −Wno−trigraphs.

−Wtraditional
Warn about certain constructs that behave differently in traditional andISO C. Alsowarn aboutISO C
constructs that have no traditional C equivalent, and problematic constructs which should be avoided.

−Wimport
Warn the first time#import is used.

−Wundef
Warn whenever an identifier which is not a macro is encountered in an#if directive, outside of
defined. Such identifiers are replaced with zero.

−Wunused−macros
Warn about macros defined in the main file that are unused.A macro isusedif it is expanded or tested
for existence at least once. The preprocessor will also warn if the macro has not been used at the time
it is redefined or undefined.

Built-in macros, macros defined on the command line, and macros defined in include files are not
warned about.

Note: If a macro is actually used, but only used in skipped conditional blocks, thenCPPwill report it
as unused.To avoid the warning in such a case, you might improve the scope of the macro’s definition
by, for example, moving it into the first skipped block.Alternatively, you could provide a dummy use
with something like:

gcc-4.0.3 2006-04-20 64

GCC(1) GNU GCC(1)

#if defined the_macro_causing_the_warning
#endif

−Wendif−labels
Warn whenever an #elseor an#endif are followed by text. Thisusually happens in code of the form

#if FOO
...
#else FOO
...
#endif FOO

The second and thirdFOOshould be in comments, but often are not in older programs. This warning
is on by default.

−Werror
Make all warnings into hard errors. Source code which triggers warnings will be rejected.

−Wsystem−headers
Issue warnings for code in system headers. These are normally unhelpful in finding bugs in your own
code, therefore suppressed. If you are responsible for the system library, you may want to see them.

−w Suppress all warnings, including those whichGNU CPPissues by default.

−pedantic
Issue all the mandatory diagnostics listed in the C standard.Some of them are left out by default,
since they trigger frequently on harmless code.

−pedantic−errors
Issue all the mandatory diagnostics, and make all mandatory diagnostics into errors. This includes
mandatory diagnostics thatGCC issues without−pedanticbut treats as warnings.

−M
Instead of outputting the result of preprocessing, output a rule suitable formake describing the depen-
dencies of the main source file. The preprocessor outputs onemake rule containing the object file
name for that source file, a colon, and the names of all the included files, including those coming from
−include or −imacroscommand line options.

Unless specified explicitly (with−MT or −MQ), the object file name consists of the basename of the
source file with any suffix replaced with object file suffix. If there are many included files then the rule
is split into several lines using\−newline. Therule has no commands.

This option does not suppress the preprocessor’s debug output, such as−dM . To avoid mixing such
debug output with the dependency rules you should explicitly specify the dependency output file with
−MF , or use an environment variable like DEPENDENCIES_OUTPUT. Debug output will still be sent
to the regular output stream as normal.

Passing−M to the driver implies−E, and suppresses warnings with an implicit−w.

−MM
Like −M but do not mention header files that are found in system header directories, nor header files
that are included, directly or indirectly, from such a header.

This implies that the choice of angle brackets or double quotes in an#include directive does not in
itself determine whether that header will appear in−MM dependency output. Thisis a slight change
in semantics fromGCCversions 3.0 and earlier.

@anchor{dashMF}

−MF file
When used with−M or −MM , specifies a file to write the dependencies to. If no−MF switch is given
the preprocessor sends the rules to the same place it would have sent preprocessed output.

When used with the driver options−MD or −MMD , −MF overrides the default dependency output

gcc-4.0.3 2006-04-20 65

GCC(1) GNU GCC(1)

file.

−MG
In conjunction with an option such as−M requesting dependency generation,−MG assumes missing
header files are generated files and adds them to the dependency list without raising an error. The
dependency filename is taken directly from the#include directive without prepending any path.
−MG also suppresses preprocessed output, as a missing header file renders this useless.

This feature is used in automatic updating of makefiles.

−MP
This option instructsCPPto add a phony target for each dependency other than the main file, causing
each to depend on nothing. These dummy rules work around errorsmake gives if you remove header
files without updating theMakefileto match.

This is typical output:

test.o: test.c test.h

test.h:

−MT target
Change the target of the rule emitted by dependency generation. BydefaultCPPtakes the name of the
main input file, including any path, deletes any file suffix such as.c, and appends the platform’s usual
object suffix. Theresult is the target.

An −MT option will set the target to be exactly the string you specify. If you want multiple targets,
you can specify them as a single argument to−MT , or use multiple−MT options.

For example,−MT ’$(objpfx)foo.o’ might give

$(objpfx)foo.o: foo.c

−MQ target
Same as−MT , but it quotes any characters which are special to Make.−MQ ’$(objpfx)foo.o’ gives

$$(objpfx)foo.o: foo.c

The default target is automatically quoted, as if it were given with −MQ .

−MD
−MD is equivalent to−M −MF file, except that−E is not implied. The driver determinesfile based on
whether an−o option is given. If it is, the driver uses its argument but with a suffix of.d, otherwise it
take the basename of the input file and applies a.d suffix.

If −MD is used in conjunction with−E, any −o switch is understood to specify the dependency output
file (but @pxref {dashMF,,−MF}), but if used without−E, each−o is understood to specify a target
object file.

Since−E is not implied,−MD can be used to generate a dependency output file as a side-effect of the
compilation process.

−MMD
Like −MD except mention only user header files, not system header files.

−fpch−deps
When using precompiled headers, this flag will cause the dependency-output flags to also list the files
from the precompiled header’s dependencies. Ifnot specified only the precompiled header would be
listed and not the files that were used to create it because those files are not consulted when a precom-
piled header is used.

−fpch−preprocess
This option allows use of a precompiled header together with−E. It inserts a special#pragma ,
#pragma GCC pch_preprocess "<filename>" in the output to mark the place where the
precompiled header was found, and its filename.When−fpreprocessedis in use,GCC recognizes this

gcc-4.0.3 2006-04-20 66

GCC(1) GNU GCC(1)

#pragma and loads thePCH.

This option is off by default, because the resulting preprocessed output is only really suitable as input
to GCC. It is switched on by−save−temps.

You should not write this#pragma in your own code, but it is safe to edit the filename if thePCHfile
is available in a different location.The filename may be absolute or it may be relative to GCC’s cur-
rent directory.

−x c
−x c++
−x objective-c
−x assembler-with-cpp

Specify the source language: C, C++, Objective−C, or assembly. This has nothing to do with standards
conformance or extensions; it merely selects which base syntax to expect. If you give none of these
options, cpp will deduce the language from the extension of the source file:.c, .cc, .m, or .S. Some
other common extensions for C++ and assembly are also recognized.If cpp does not recognize the
extension, it will treat the file as C; this is the most generic mode.

Note:Previous versions of cpp accepted a−lang option which selected both the language and the stan-
dards conformance level. This option has been removed, because it conflicts with the−l option.

−std=standard
−ansi

Specify the standard to which the code should conform.CurrentlyCPPknows about C and C++ stan-
dards; others may be added in the future.

standardmay be one of:

iso9899:1990
c89

The ISO C standard from 1990.c89 is the customary shorthand for this version of the standard.

The−ansioption is equivalent to−std=c89.

iso9899:199409
The 1990 C standard, as amended in 1994.

iso9899:1999
c99
iso9899:199x
c9x

The revisedISO C standard, published in December 1999. Before publication, this was known as
C9X.

gnu89
The 1990 C standard plusGNU extensions. Thisis the default.

gnu99
gnu9x

The 1999 C standard plusGNU extensions.

c++98
The 1998ISO C++standard plus amendments.

gnu++98
The same as−std=c++98plusGNU extensions. Thisis the default for C++code.

−I−
Split the include path.Any directories specified with−I options before−I− are searched only for
headers requested with#include " file" ; they are not searched for#include < file>. If
additional directories are specified with−I options after the−I−, those directories are searched for all
#includedirectives.

gcc-4.0.3 2006-04-20 67

GCC(1) GNU GCC(1)

In addition,−I− inhibits the use of the directory of the current file directory as the first search directory
for #include " file" . This option has been deprecated.

−nostdinc
Do not search the standard system directories for header files. Only the directories you have specified
with −I options (and the directory of the current file, if appropriate) are searched.

−nostdinc++
Do not search for header files in the C++−specific standard directories, but do still search the other stan-
dard directories. (This option is used when building the C++ library.)

−include file
Processfile as if #include "file" appeared as the first line of the primary source file.However,
the first directory searched forfile is the preprocessor’s working directoryinstead ofthe directory con-
taining the main source file. If not found there, it is searched for in the remainder of the#include
"..." search chain as normal.

If multiple −include options are given, the files are included in the order they appear on the command
line.

−imacrosfile
Exactly like −include, except that any output produced by scanningfile is thrown away. Macros it
defines remain defined. This allows you to acquire all the macros from a header without also process-
ing its declarations.

All files specified by−imacrosare processed before all files specified by−include.

−idirafter dir
Searchdir for header files, but do itafter all directories specified with−I and the standard system
directories have been exhausted.dir is treated as a system include directory.

−iprefix prefix
Specifyprefix as the prefix for subsequent−iwithprefix options. If the prefix represents a directory,
you should include the final/.

−iwithprefix dir
−iwithprefixbefore dir

Appenddir to the prefix specified previously with−iprefix , and add the resulting directory to the
include search path.−iwithprefixbefore puts it in the same place−I would; −iwithprefix puts it
where−idirafter would.

−isystemdir
Searchdir for header files, after all directories specified by−I but before the standard system directo-
ries. Markit as a system directory, so that it gets the same special treatment as is applied to the stan-
dard system directories.

−iquote dir
Searchdir only for header files requested with#include " file" ; they are not searched for
#include < file>, before all directories specified by−I and before the standard system directo-
ries.

−fdollars−in−identifiers
@anchor{fdollars−in−identifiers} Accept$ in identifiers.

−fpreprocessed
Indicate to the preprocessor that the input file has already been preprocessed.This suppresses things
like macro expansion, trigraph conversion, escaped newline splicing, and processing of most direc-
tives. Thepreprocessor still recognizes and removes comments, so that you can pass a file prepro-
cessed with−C to the compiler without problems. In this mode the integrated preprocessor is little
more than a tokenizer for the front ends.

−fpreprocessedis implicit if the input file has one of the extensions.i, .ii or .mi. These are the exten-
sions thatGCCuses for preprocessed files created by−save−temps.

gcc-4.0.3 2006-04-20 68

GCC(1) GNU GCC(1)

−ftabstop=width
Set the distance between tab stops.This helps the preprocessor report correct column numbers in
warnings or errors, even if tabs appear on the line. If the value is less than 1 or greater than 100, the
option is ignored. The default is 8.

−fexec−charset=charset
Set the execution character set, used for string and character constants. The default isUTF−8. charset
can be any encoding supported by the system’siconv library routine.

−fwide−exec−charset=charset
Set the wide execution character set, used for wide string and character constants. The default is
UTF−32 or UTF−16, whichever corresponds to the width ofwchar_t . As with −fexec−charset,
charsetcan be any encoding supported by the system’s iconv library routine; however, you will have
problems with encodings that do not fit exactly inwchar_t .

−finput−charset=charset
Set the input character set, used for translation from the character set of the input file to the source
character set used byGCC. If the locale does not specify, or GCCcannot get this information from the
locale, the default isUTF−8. This can be overridden by either the locale or this command line option.
Currently the command line option takes precedence if there’s a conflict. charsetcan be any encoding
supported by the system’siconv library routine.

−fworking−directory
Enable generation of linemarkers in the preprocessor output that will let the compiler know the current
working directory at the time of preprocessing. When this option is enabled, the preprocessor will
emit, after the initial linemarker, a second linemarker with the current working directory followed by
two slashes.GCC will use this directory, when it’s present in the preprocessed input, as the directory
emitted as the current working directory in some debugging information formats.This option is
implicitly enabled if debugging information is enabled, but this can be inhibited with the negated form
−fno−working−directory . If the −P flag is present in the command line, this option has no effect,
since no#line directives are emitted whatsoever.

−fno−show−column
Do not print column numbers in diagnostics.This may be necessary if diagnostics are being scanned
by a program that does not understand the column numbers, such asdejagnu.

−A predicate=answer
Make an assertion with the predicatepredicateand answeranswer. This form is preferred to the older
form −A predicate(answer), which is still supported, because it does not use shell special characters.

−A −predicate=answer
Cancel an assertion with the predicatepredicateand answeranswer.

−dCHARS
CHARSis a sequence of one or more of the following characters, and must not be preceded by a space.
Other characters are interpreted by the compiler proper, or reserved for future versions ofGCC, and so
are silently ignored. If you specify characters whose behavior conflicts, the result is undefined.

M Instead of the normal output, generate a list of#definedirectives for all the macros defined dur-
ing the execution of the preprocessor, including predefined macros. This gives you a way of find-
ing out what is predefined in your version of the preprocessor. Assuming you have no file foo.h,
the command

touch foo.h; cpp −dM foo.h

will show all the predefined macros.

D Like M except in two respects: it doesnot include the predefined macros, and it outputsboth the
#definedirectives and the result of preprocessing.Both kinds of output go to the standard output
file.

gcc-4.0.3 2006-04-20 69

GCC(1) GNU GCC(1)

N Like D, but emit only the macro names, not their expansions.

I Output#includedirectives in addition to the result of preprocessing.

−P Inhibit generation of linemarkers in the output from the preprocessor. This might be useful when run-
ning the preprocessor on something that is not C code, and will be sent to a program which might be
confused by the linemarkers.

−C Do not discard comments. All comments are passed through to the output file, except for comments in
processed directives, which are deleted along with the directive.

You should be prepared for side effects when using−C; it causes the preprocessor to treat comments
as tokens in their own right.For example, comments appearing at the start of what would be a direc-
tive line have the effect of turning that line into an ordinary source line, since the first token on the line
is no longer a#.

−CC
Do not discard comments, including during macro expansion. Thisis like −C, except that comments
contained within macros are also passed through to the output file where the macro is expanded.

In addition to the side-effects of the−C option, the−CC option causes all C++−style comments inside a
macro to be converted to C−style comments. This is to prevent later use of that macro from inadver-
tently commenting out the remainder of the source line.

The−CC option is generally used to support lint comments.

−traditional−cpp
Try to imitate the behavior of old-fashioned C preprocessors, as opposed toISO C preprocessors.

−trigraphs
Process trigraph sequences.These are three-character sequences, all starting with??, that are defined
by ISO C to stand for single characters.For example,??/ stands for\, so ’??/n’ is a character constant
for a newline. By default,GCC ignores trigraphs, but in standard-conforming modes it converts them.
See the−std and−ansioptions.

The nine trigraphs and their replacements are

Trigraph: ??(??) ??< ??> ??= ??/ ??’ ??! ??−
Replacement: [] { } # \ ˆ  ˜

−remap
Enable special code to work around file systems which only permit very short file names, such as
MS−DOS.

−−help
−−target−help

Print text describing all the command line options instead of preprocessing anything.

−v Verbose mode. Print outGNU CPP’s version number at the beginning of execution, and report the final
form of the include path.

−H Print the name of each header file used, in addition to other normal activities. Eachname is indented
to show how deep in the#include stack it is. Precompiled header files are also printed, even if they
are found to be invalid; an invalid precompiled header file is printed with...x and a valid one with...! .

−version
−−version

Print out GNU CPP’s version number. With one dash, proceed to preprocess as normal.With two
dashes, exit immediately.

gcc-4.0.3 2006-04-20 70

GCC(1) GNU GCC(1)

Passing Options to the Assembler

You can pass options to the assembler.

−Wa,option
Passoptionas an option to the assembler. If optioncontains commas, it is split into multiple options
at the commas.

−Xassembleroption
Pass option as an option to the assembler. You can use this to supply system-specific assembler
options whichGCCdoes not know how to recognize.

If you want to pass an option that takes an argument, you must use−Xassemblertwice, once for the
option and once for the argument.

Options for Linking

These options come into play when the compiler links object files into an executable output file.They are
meaningless if the compiler is not doing a link step.

object-file-name
A file name that does not end in a special recognized suffix is considered to name an object file or
library. (Object files are distinguished from libraries by the linker according to the file contents.)If
linking is done, these object files are used as input to the linker.

−c
−S
−E If any of these options is used, then the linker is not run, and object file names should not be used as

arguments.

−llibrary
−l library

Search the library namedlibrary when linking. (The second alternative with the library as a separate
argument is only forPOSIXcompliance and is not recommended.)

It makes a difference where in the command you write this option; the linker searches and processes
libraries and object files in the order they are specified.Thus,foo.o −lz bar.o searches libraryz after
file foo.obut beforebar.o. If bar.o refers to functions inz, those functions may not be loaded.

The linker searches a standard list of directories for the library, which is actually a file namedlibli-
brary.a. The linker then uses this file as if it had been specified precisely by name.

The directories searched include several standard system directories plus any that you specify with−L .

Normally the files found this way are library files−−−archive files whose members are object files.
The linker handles an archive file by scanning through it for members which define symbols that have
so far been referenced but not defined. But if the file that is found is an ordinary object file, it is linked
in the usual fashion. Theonly difference between using an−l option and specifying a file name is that
−l surroundslibrary with lib and.a and searches several directories.

−lobjc
You need this special case of the−l option in order to link an Objective-C or Objective−C++program.

−nostartfiles
Do not use the standard system startup files when linking. The standard system libraries are used nor-
mally, unless−nostdlib or −nodefaultlibs is used.

−nodefaultlibs
Do not use the standard system libraries when linking. Only the libraries you specify will be passed to
the linker. The standard startup files are used normally, unless−nostartfiles is used. The compiler
may generate calls tomemcmp, memset, memcpyandmemmove. These entries are usually resolved
by entries in libc. These entry points should be supplied through some other mechanism when this
option is specified.

gcc-4.0.3 2006-04-20 71

GCC(1) GNU GCC(1)

−nostdlib
Do not use the standard system startup files or libraries when linking.No startup files and only the
libraries you specify will be passed to the linker. The compiler may generate calls tomemcmp, mem-
set , memcpy and memmove. These entries are usually resolved by entries in libc. These entry
points should be supplied through some other mechanism when this option is specified.

One of the standard libraries bypassed by−nostdlib and−nodefaultlibs is libgcc.a, a library of inter-
nal subroutines thatGCC uses to overcome shortcomings of particular machines, or special needs for
some languages.

In most cases, you needlibgcc.aev en when you want to avoid other standard libraries. In other words,
when you specify−nostdlib or −nodefaultlibs you should usually specify−lgccas well. This ensures
that you have no unresolved references to internalGCC library subroutines.(For example,_ _main,
used to ensure C++constructors will be called.)

−pie
Produce a position independent executable on targets which support it.For predictable results, you
must also specify the same set of options that were used to generate code (−fpie, −fPIE , or model sub-
options) when you specify this option.

−s Remove all symbol table and relocation information from the executable.

−static
On systems that support dynamic linking, this prevents linking with the shared libraries.On other sys-
tems, this option has no effect.

−shared
Produce a shared object which can then be linked with other objects to form an executable. Notall
systems support this option.For predictable results, you must also specify the same set of options that
were used to generate code (−fpic, −fPIC , or model suboptions) when you specify this option.[1]

−shared−libgcc
−static−libgcc

On systems that provide libgcc as a shared library, these options force the use of either the shared or
static version respectively. If no shared version oflibgcc was built when the compiler was configured,
these options have no effect.

There are several situations in which an application should use the sharedlibgcc instead of the static
version. Themost common of these is when the application wishes to throw and catch exceptions
across different shared libraries. In that case, each of the libraries as well as the application itself
should use the sharedlibgcc.

Therefore, the G++ andGCJ drivers automatically add−shared−libgccwhenever you build a shared
library or a main executable, because C++ and Java programs typically use exceptions, so this is the
right thing to do.

If, instead, you use theGCCdriver to create shared libraries, you may find that they will not always be
linked with the sharedlibgcc. If GCC finds, at its configuration time, that you have a non-GNU linker
or a GNU linker that does not support option−−eh−frame−hdr, it will link the shared version of
libgcc into shared libraries by default. Otherwise,it will take advantage of the linker and optimize
aw ay the linking with the shared version oflibgcc, linking with the static version of libgcc by default.
This allows exceptions to propagate through such shared libraries, without incurring relocation costs at
library load time.

However, if a library or main executable is supposed to throw or catch exceptions, you must link it
using the G++ orGCJdriver, as appropriate for the languages used in the program, or using the option
−shared−libgcc, such that it is linked with the sharedlibgcc.

−symbolic
Bind references to global symbols when building a shared object.Warn about any unresolved refer-
ences (unless overridden by the link editor option−Xlink er −z −Xlinker defs). Only a few systems

gcc-4.0.3 2006-04-20 72

GCC(1) GNU GCC(1)

support this option.

−Xlinker option
Passoptionas an option to the linker. You can use this to supply system-specific linker options which
GCCdoes not know how to recognize.

If you want to pass an option that takes an argument, you must use−Xlinker twice, once for the
option and once for the argument. For example, to pass−assert definitions, you must write−Xlinker
−assert −Xlinker definitions. It does not work to write−Xlink er ‘‘−assert definitions’’ , because this
passes the entire string as a single argument, which is not what the linker expects.

−Wl,option
Passoptionas an option to the linker. If optioncontains commas, it is split into multiple options at the
commas.

−u symbol
Pretend the symbolsymbolis undefined, to force linking of library modules to define it.You can use
−u multiple times with different symbols to force loading of additional library modules.

Options for Directory Search

These options specify directories to search for header files, for libraries and for parts of the compiler:

−Idir
Add the directorydir to the head of the list of directories to be searched for header files. This can be
used to override a system header file, substituting your own version, since these directories are
searched before the system header file directories.However, you should not use this option to add
directories that contain vendor-supplied system header files (use−isystem for that). If you use more
than one−I option, the directories are scanned in left-to-right order; the standard system directories
come after.

If a standard system include directory, or a directory specified with−isystem, is also specified with−I ,
the−I option will be ignored. The directory will still be searched but as a system directory at its nor-
mal position in the system include chain. This is to ensure thatGCC’s procedure to fix buggy system
headers and the ordering for the include_next directive are not inadvertently changed. If you really
need to change the search order for system directories, use the−nostdincand/or−isystemoptions.

−iquotedir
Add the directorydir to the head of the list of directories to be searched for header files only for the
case of#include "file" ; they are not searched for#include <file>, otherwise just like−I .

−Ldir
Add directorydir to the list of directories to be searched for−l.

−Bprefix
This option specifies where to find the executables, libraries, include files, and data files of the com-
piler itself.

The compiler driver program runs one or more of the subprogramscpp, cc1, as and ld. It tries prefix
as a prefix for each program it tries to run, both with and withoutmachine/version/.

For each subprogram to be run, the compiler driver first tries the−B prefix, if any. If that name is not
found, or if −B was not specified, the driver tries two standard prefixes, which are/usr/lib/gcc/ and
/usr/local/lib/gcc/. If neither of those results in a file name that is found, the unmodified program
name is searched for using the directories specified in yourPATH environment variable.

The compiler will check to see if the path provided by the−B refers to a directory, and if necessary it
will add a directory separator character at the end of the path.

−B prefixes that effectively specify directory names also apply to libraries in the linker, because the
compiler translates these options into−L options for the linker. They also apply to includes files in the
preprocessor, because the compiler translates these options into−isystemoptions for the preprocessor.

gcc-4.0.3 2006-04-20 73

GCC(1) GNU GCC(1)

In this case, the compiler appendsinclude to the prefix.

The run-time support filelibgcc.acan also be searched for using the−B prefix, if needed. If it is not
found there, the two standard prefixes above are tried, and that is all. The file is left out of the link if it
is not found by those means.

Another way to specify a prefix much like the −B prefix is to use the environment variable
GCC_EXEC_PREFIX.

As a special kludge, if the path provided by−B is [dir/]stageN/, whereN is a number in the range 0 to
9, then it will be replaced by[dir/]include. This is to help with boot-strapping the compiler.

−specs=file
Processfile after the compiler reads in the standardspecsfile, in order to override the defaults that the
gcc driver program uses when determining what switches to pass tocc1, cc1plus, as, ld, etc. More
than one−specs=file can be specified on the command line, and they are processed in order, from left
to right.

−I−
This option has been deprecated.Please use−iquote instead for−I directories before the−I− and
remove the−I−. Any directories you specify with−I options before the−I− option are searched only
for the case of#include "file" ; they are not searched for#include <file>.

If additional directories are specified with−I options after the−I−, these directories are searched for
all #includedirectives. (Ordinarilyall −I directories are used this way.)

In addition, the−I− option inhibits the use of the current directory (where the current input file came
from) as the first search directory for#include "file" . There is no way to override this effect of−I−.
With −I. you can specify searching the directory which was current when the compiler was invoked.
That is not exactly the same as what the preprocessor does by default, but it is often satisfactory.

−I− does not inhibit the use of the standard system directories for header files.Thus,−I− and−nostd-
inc are independent.

Specifying Target Machine and Compiler Version

The usual way to runGCC is to run the executable calledgcc, or <machine>−gccwhen cross−compiling,
or <machine>−gcc−<version>to run a version other than the one that was installed last. Sometimes this
is inconvenient, soGCCprovides options that will switch to another cross-compiler or version.

−b machine
The argumentmachinespecifies the target machine for compilation.

The value to use formachineis the same as was specified as the machine type when configuringGCC
as a cross−compiler. For example, if a cross-compiler was configured withconfigure i386v, meaning
to compile for an 80386 running System V, then you would specify−b i386v to run that cross com-
piler.

−V version
The argumentversionspecifies which version ofGCC to run. This is useful when multiple versions
are installed.For example,versionmight be2.0, meaning to runGCCversion 2.0.

The −V and −b options work by running the<machine>−gcc−<version>executable, so there’s no real
reason to use them if you can just run that directly.

Hardwar e Models and Configurations

Earlier we discussed the standard option−b which chooses among different installed compilers for com-
pletely different target machines, such asVAX vs. 68000 vs. 80386.

In addition, each of these target machine types can have its own special options, starting with−m, to choose
among various hardware models or configurations−−−for example, 68010 vs 68020, floating coprocessor or
none. Asingle installed version of the compiler can compile for any model or configuration, according to

gcc-4.0.3 2006-04-20 74

GCC(1) GNU GCC(1)

the options specified.

Some configurations of the compiler also support additional special options, usually for compatibility with
other compilers on the same platform.

These options are defined by the macroTARGET_SWITCHESin the machine description. The default for
the options is also defined by that macro, which enables you to change the defaults.

ARCOptions

These options are defined forARC implementations:

−EL
Compile code for little endian mode. This is the default.

−EB
Compile code for big endian mode.

−mmangle−cpu
Prepend the name of the cpu to all public symbol names.In multiple-processor systems, there are
manyARC variants with different instruction and register set characteristics.This flag prevents code
compiled for one cpu to be linked with code compiled for another. No facility exists for handling vari-
ants that are ‘‘almost identical’’. This is an all or nothing option.

−mcpu=cpu
Compile code forARC variant cpu. Which variants are supported depend on the configuration.All
variants support−mcpu=base, this is the default.

−mtext=text-section
−mdata=data-section
−mrodata=readonly-data-section

Put functions, data, and readonly data intext-section, data-section, and readonly-data-sectionrespec-
tively by default. Thiscan be overridden with thesection attribute.

ARMOptions

These−m options are defined for AdvancedRISCMachines (ARM) architectures:

−mabi=name
Generate code for the specifiedABI . Permissible values are:apcs-gnu, atpcs, aapcsandiwmmxt .

−mapcs−frame
Generate a stack frame that is compliant with theARM Procedure Call Standard for all functions, even
if this is not strictly necessary for correct execution of the code.Specifying−fomit−frame−pointer
with this option will cause the stack frames not to be generated for leaf functions.The default is
−mno−apcs−frame.

−mapcs
This is a synonym for−mapcs−frame.

−mthumb−interwork
Generate code which supports calling between theARM and Thumb instruction sets.Without this
option the two instruction sets cannot be reliably used inside one program. The default is
−mno−thumb−interwork , since slightly larger code is generated when−mthumb−interwork is
specified.

−mno−sched−prolog
Prevent the reordering of instructions in the function prolog, or the merging of those instruction with
the instructions in the function’s body. This means that all functions will start with a recognizable set
of instructions (or in fact one of a choice from a small set of different function prologues), and this
information can be used to locate the start if functions inside an executable piece of code. The default
is −msched−prolog.

gcc-4.0.3 2006-04-20 75

GCC(1) GNU GCC(1)

−mhard−float
Generate output containing floating point instructions. This is the default.

−msoft−float
Generate output containing library calls for floating point.Warning: the requisite libraries are not
available for allARM targets. Normallythe facilities of the machine’s usual C compiler are used, but
this cannot be done directly in cross−compilation.You must make your own arrangements to provide
suitable library functions for cross−compilation.

−msoft−float changes the calling convention in the output file; therefore, it is only useful if you com-
pile all of a program with this option.In particular, you need to compilelibgcc.a, the library that
comes withGCC, with −msoft−float in order for this to work.

−mfloat−abi=name
Specifies whichABI to use for floating point values. Permissiblevalues are:soft, softfp andhard.

soft andhard are equivalent to−msoft−float and−mhard−float respectively. softfp allows the gen-
eration of floating point instructions, but still uses the soft-float calling conventions.

−mlittle−endian
Generate code for a processor running in little-endian mode.This is the default for all standard con-
figurations.

−mbig−endian
Generate code for a processor running in big-endian mode; the default is to compile code for a little-
endian processor.

−mwords−little−endian
This option only applies when generating code for big-endian processors. Generate code for a little-
endian word order but a big-endian byte order. That is, a byte order of the form32107654. Note: this
option should only be used if you require compatibility with code for big-endianARM processors gen-
erated by versions of the compiler prior to 2.8.

−mcpu=name
This specifies the name of the target ARM processor.GCC uses this name to determine what kind of
instructions it can emit when generating assembly code. Permissible names are:arm2, arm250,
arm3, arm6, arm60, arm600, arm610, arm620, arm7, arm7m, arm7d, arm7dm, arm7di,
arm7dmi, arm70, arm700, arm700i, arm710, arm710c, arm7100, arm7500, arm7500fe,
arm7tdmi , arm7tdmi−s, arm8, strongarm, strongarm110, strongarm1100, arm8, arm810, arm9,
arm9e, arm920, arm920t, arm922t, arm946e−s, arm966e−s, arm968e−s, arm926ej−s, arm940t,
arm9tdmi , arm10tdmi, arm1020t, arm1026ej−s, arm10e, arm1020e, arm1022e, arm1136j−s,
arm1136jf−s, mpcore, mpcorenovfp, arm1176jz−s, arm1176jzf−s, xscale, iwmmxt , ep9312.

−mtune=name
This option is very similar to the−mcpu= option, except that instead of specifying the actual target
processor type, and hence restricting which instructions can be used, it specifies thatGCC should tune
the performance of the code as if the target were of the type specified in this option, but still choosing
the instructions that it will generate based on the cpu specified by a−mcpu= option. For someARM
implementations better performance can be obtained by using this option.

−march=name
This specifies the name of the targetARM architecture.GCCuses this name to determine what kind of
instructions it can emit when generating assembly code.This option can be used in conjunction with
or instead of the−mcpu= option. Permissiblenames are:armv2, armv2a, armv3, armv3m, armv4,
armv4t, armv5, armv5t, armv5te, armv6, armv6j , iwmmxt , ep9312.

−mfpu=name
−mfpe=number
−mfp=number

This specifies what floating point hardware (or hardware emulation) is available on the target. Permis-
sible names are:fpa, fpe2, fpe3, maverick , vfp. −mfp and −mfpe are synonyms for

gcc-4.0.3 2006-04-20 76

GCC(1) GNU GCC(1)

−mfpu=fpenumber, for compatibility with older versions ofGCC.

If −msoft−float is specified this specifies the format of floating point values.

−mstructure−size−boundary=n
The size of all structures and unions will be rounded up to a multiple of the number of bits set by this
option. Permissiblevalues are 8, 32 and 64.The default value varies for different toolchains.For the
COFF targeted toolchain the default value is 8. A value of 64 is only allowed if the underlyingABI
supports it.

Specifying the larger number can produce faster, more efficient code, but can also increase the size of
the program.Different values are potentially incompatible. Code compiled with one value cannot
necessarily expect to work with code or libraries compiled with another value, if they exchange infor-
mation using structures or unions.

−mabort−on−noreturn
Generate a call to the functionabort at the end of anoreturn function. Itwill be executed if the
function tries to return.

−mlong−calls
−mno−long−calls

Tells the compiler to perform function calls by first loading the address of the function into a register
and then performing a subroutine call on this register. This switch is needed if the target function will
lie outside of the 64 megabyte addressing range of the offset based version of subroutine call instruc-
tion.

Even if this switch is enabled, not all function calls will be turned into long calls.The heuristic is that
static functions, functions which have the short-call attribute, functions that are inside the scope of a
#pragma no_long_callsdirective and functions whose definitions have already been compiled within
the current compilation unit, will not be turned into long calls. The exception to this rule is that weak
function definitions, functions with thelong-call attribute or thesectionattribute, and functions that
are within the scope of a#pragma long_callsdirective, will always be turned into long calls.

This feature is not enabled by default. Specifying−mno−long−callswill restore the default behavior,
as will placing the function calls within the scope of a#pragma long_calls_offdirective. Note these
switches have no effect on how the compiler generates code to handle function calls via function
pointers.

−mnop−fun−dllimport
Disable support for thedllimport attribute.

−msingle−pic−base
Treat the register used forPIC addressing as read−only, rather than loading it in the prologue for each
function. Therun-time system is responsible for initializing this register with an appropriate value
before execution begins.

−mpic−register=reg
Specify the register to be used forPIC addressing. Thedefault is R10 unless stack-checking is
enabled, when R9 is used.

−mcirrus−fix−in valid−insns
Insert NOPs into the instruction stream to in order to work around problems with invalid Maverick
instruction combinations. This option is only valid if the−mcpu=ep9312option has been used to
enable generation of instructions for the Cirrus Maverick floating point co−processor. This option is
not enabled by default, since the problem is only present in older Maverick implementations.The
default can be re-enabled by use of the−mno−cirrus−fix−invalid−insns switch.

−mpoke−function−name
Write the name of each function into the text section, directly preceding the function prologue.The
generated code is similar to this:

gcc-4.0.3 2006-04-20 77

GCC(1) GNU GCC(1)

t0
.ascii "arm_poke_function_name", 0
.align

t1
.word 0xff000000 + (t1 − t0)

arm_poke_function_name
mov ip, sp
stmfd sp!, {fp, ip, lr, pc}
sub fp, ip, #4

When performing a stack backtrace, code can inspect the value ofpc stored atfp + 0 . If the trace
function then looks at locationpc − 12 and the top 8 bits are set, then we know that there is a func-
tion name embedded immediately preceding this location and has length((pc[−3]) &
0xff000000) .

−mthumb
Generate code for the 16−bit Thumb instruction set.The default is to use the 32−bitARM instruction
set.

−mtpcs−frame
Generate a stack frame that is compliant with the Thumb Procedure Call Standard for all non-leaf
functions. (A leaf function is one that does not call any other functions.) The default is
−mno−tpcs−frame.

−mtpcs−leaf−frame
Generate a stack frame that is compliant with the Thumb Procedure Call Standard for all leaf func-
tions. (A leaf function is one that does not call any other functions.) The default is
−mno−apcs−leaf−frame.

−mcallee−super−interworking
Gives all externally visible functions in the file being compiled anARM instruction set header which
switches to Thumb mode before executing the rest of the function. This allows these functions to be
called from non-interworking code.

−mcaller−super−interworking
Allows calls via function pointers (including virtual functions) to execute correctly regardless of
whether the target code has been compiled for interworking or not. There is a small overhead in the
cost of executing a function pointer if this option is enabled.

AVR Options

These options are defined forAVR implementations:

−mmcu=mcu
SpecifyATMEL AVR instruction set orMCU type.

Instruction set avr1 is for the minimalAVR core, not supported by the C compiler, only for assembler
programs (MCU types: at90s1200, attiny10, attiny11, attiny12, attiny15, attiny28).

Instruction set avr2 (default) is for the classicAVR core with up to 8K program memory space (MCU
types: at90s2313, at90s2323, attiny22, at90s2333, at90s2343, at90s4414, at90s4433, at90s4434,
at90s8515, at90c8534, at90s8535).

Instruction set avr3 is for the classicAVR core with up to 128K program memory space (MCU types:
atmega103, atmega603, at43usb320, at76c711).

Instruction set avr4 is for the enhancedAVR core with up to 8K program memory space (MCU types:
atmega8, atmega83, atmega85).

Instruction set avr5 is for the enhancedAVR core with up to 128K program memory space (MCU
types: atmega16, atmega161, atmega163, atmega32, atmega323, atmega64, atmega128, at43usb355,
at94k).

gcc-4.0.3 2006-04-20 78

GCC(1) GNU GCC(1)

−msize
Output instruction sizes to the asm file.

−minit−stack=N
Specify the initial stack address, which may be a symbol or numeric value,_ _stack is the default.

−mno−interrupts
Generated code is not compatible with hardware interrupts. Code size will be smaller.

−mcall−prologues
Functions prologues/epilogues expanded as call to appropriate subroutines. Code size will be smaller.

−mno−tablejump
Do not generate tablejump insns which sometimes increase code size.

−mtiny−stack
Change only the low 8 bits of the stack pointer.

−mint8
Assume int to be 8 bit integer. This affects the sizes of all types: A char will be 1 byte, an int will be 1
byte, an long will be 2 bytes and long long will be 4 bytes. Please note that this option does not com-
ply to the C standards, but it will provide you with smaller code size.

Blackfin Options

−momit−leaf−frame−pointer
Don’t keep the frame pointer in a register for leaf functions. This avoids the instructions to save, set
up and restore frame pointers and makes an extra register available in leaf functions. The option
−fomit−frame−pointer removes the frame pointer for all functions which might make debugging
harder.

−mspecld−anomaly
When enabled, the compiler will ensure that the generated code does not contain speculative loads
after jump instructions. This option is enabled by default.

−mno−specld−anomaly
Don’t generate extra code to prevent speculative loads from occurring.

−mcsync−anomaly
When enabled, the compiler will ensure that the generated code does not containCSYNC or SSYNC
instructions too soon after conditional branches. This option is enabled by default.

−mno−csync−anomaly
Don’t generate extra code to prevent CSYNC or SSYNC instructions from occurring too soon after a
conditional branch.

−mlow−64k
When enabled, the compiler is free to take advantage of the knowledge that the entire program fits into
the low 64k of memory.

−mno−low−64k
Assume that the program is arbitrarily large. Thisis the default.

−mid−shared−library
Generate code that supports shared libraries via the libraryID method. Thisallows for execute in
place and shared libraries in an environment without virtual memory management. This option
implies−fPIC .

−mno−id−shared−library
Generate code that doesn’t assumeID based shared libraries are being used. This is the default.

−mshared−library−id=n
Specified the identification number of theID based shared library being compiled.Specifying a value
of 0 will generate more compact code, specifying other values will force the allocation of that number
to the current library but is no more space or time efficient than omitting this option.

gcc-4.0.3 2006-04-20 79

GCC(1) GNU GCC(1)

−mlong−calls
−mno−long−calls

Tells the compiler to perform function calls by first loading the address of the function into a register
and then performing a subroutine call on this register. This switch is needed if the target function will
lie outside of the 24 bit addressing range of the offset based version of subroutine call instruction.

This feature is not enabled by default. Specifying−mno−long−callswill restore the default behavior.
Note these switches have no effect on how the compiler generates code to handle function calls via
function pointers.

CRISOptions

These options are defined specifically for theCRISports.

−march=architecture-type
−mcpu=architecture-type

Generate code for the specified architecture. The choices forarchitecture-typearev3, v8 andv10 for
respectively ETRAX 4, ETRAX 100, and ETRAX 100LX . Default is v0 except for
cris−axis−linux−gnu, where the default isv10.

−mtune=architecture-type
Tune toarchitecture-typeev erything applicable about the generated code, except for theABI and the
set of available instructions. The choices forarchitecture-typeare the same as for−march=architec-
ture-type.

−mmax−stack−frame=n
Warn when the stack frame of a function exceedsn bytes.

−melinux−stacksize=n
Only available with thecris-axis-aout target. Arrangesfor indications in the program to the kernel
loader that the stack of the program should be set ton bytes.

−metrax4
−metrax100

The options−metrax4 and−metrax100are synonyms for−march=v3 and−march=v8 respectively.

−mmul−bug−workaround
−mno−mul−bug−workaround

Work around a bug in themuls andmulu instructions forCPU models where it applies. This option
is active by default.

−mpdebug
Enable CRIS-specific verbose debug-related information in the assembly code.This option also has
the effect to turn off the#NO_APP formatted-code indicator to the assembler at the beginning of the
assembly file.

−mcc−init
Do not use condition-code results from previous instruction; always emit compare and test instructions
before use of condition codes.

−mno−side−effects
Do not emit instructions with side-effects in addressing modes other than post−increment.

−mstack−align
−mno−stack−align
−mdata−align
−mno−data−align
−mconst−align
−mno−const−align

These options (no−options) arranges (eliminate arrangements) for the stack−frame, individual data and
constants to be aligned for the maximum single data access size for the chosenCPU model. The
default is to arrange for 32−bit alignment.ABI details such as structure layout are not affected by

gcc-4.0.3 2006-04-20 80

GCC(1) GNU GCC(1)

these options.

−m32−bit
−m16−bit
−m8−bit

Similar to the stack− data− and const-align options above, these options arrange for stack−frame,
writable data and constants to all be 32−bit, 16−bit or 8−bit aligned. The default is 32−bit alignment.

−mno−prologue−epilogue
−mprologue−epilogue

With −mno−prologue−epilogue, the normal function prologue and epilogue that sets up the stack-
frame are omitted and no return instructions or return sequences are generated in the code.Use this
option only together with visual inspection of the compiled code: no warnings or errors are generated
when call-saved registers must be saved, or storage for local variable needs to be allocated.

−mno−gotplt
−mgotplt

With −fpic and−fPIC , don’t generate (do generate) instruction sequences that load addresses for func-
tions from thePLT part of theGOT rather than (traditional on other architectures) calls to thePLT. The
default is−mgotplt.

−maout
Legacy no-op option only recognized with the cris-axis-aout target.

−melf
Legacy no-op option only recognized with the cris-axis-elf and cris-axis-linux-gnu targets.

−melinux
Only recognized with the cris-axis-aout target, where it selects a GNU/linux−like multilib, include
files and instruction set for−march=v8.

−mlinux
Legacy no-op option only recognized with the cris-axis-linux-gnu target.

−sim
This option, recognized for the cris-axis-aout and cris-axis-elf arranges to link with input-output func-
tions from a simulator library. Code, initialized data and zero-initialized data are allocated consecu-
tively.

−sim2
Like −sim, but pass linker options to locate initialized data at 0x40000000 and zero-initialized data at
0x80000000.

Darwin Options

These options are defined for all architectures running the Darwin operating system.

FSF GCCon Darwin does not create ‘‘fat’ ’ object files; it will create an object file for the single architecture
that it was built to target. Apple’s GCC on Darwin does create ‘‘fat’ ’ fi les if multiple −arch options are
used; it does so by running the compiler or linker multiple times and joining the results together withlipo.

The subtype of the file created (like ppc7400or ppc970or i686) is determined by the flags that specify the
ISA that GCC is targetting, like −mcpu or −march. The −force_cpusubtype_ALL option can be used to
override this.

The Darwin tools vary in their behavior when presented with anISA mismatch. Theassembler,as, will
only permit instructions to be used that are valid for the subtype of the file it is generating, so you cannot
put 64−bit instructions in anppc750object file. The linker for shared libraries,/usr/bin/libtool, will f ail
and print an error if asked to create a shared library with a less restrictive subtype than its input files (for
instance, trying to put appc970object file in appc7400library). Thelinker for executables,ld, will qui-
etly give the executable the most restrictive subtype of any of its input files.

gcc-4.0.3 2006-04-20 81

GCC(1) GNU GCC(1)

−Fdir
Add the framework directorydir to the head of the list of directories to be searched for header files.
These directories are interleaved with those specified by−I options and are scanned in a left-to-right
order.

A f ramework directory is a directory with frameworks in it. A f ramework is a directory with a
‘‘ Headers’’ and/or‘‘ PrivateHeaders’’ directory contained directly in it that ends in‘‘ .framework’’ .
The name of a framework is the name of this directory excluding the‘‘ .framework’’ . Headers associ-
ated with the framework are found in one of those two directories, with‘‘ Headers’’ being searched
first. A subframework is a framework directory that is in a framework’s ‘‘ Frameworks’’ directory.
Includes of subframework headers can only appear in a header of a framework that contains the sub-
framework, or in a sibling subframework header. Two subframeworks are siblings if they occur in the
same framework. A subframework should not have the same name as a framework, a warning will be
issued if this is violated.Currently a subframework cannot have subframeworks, in the future, the
mechanism may be extended to support this. The standard frameworks can be found in‘‘ /Sys-
tem/Library/Frameworks’’ and ‘‘ /Library/Frameworks’’ . An example include looks like
#include <Framework/header.h> , whereFramework denotes the name of the framework
and header.h is found in the‘‘ PrivateHeaders’’ or ‘‘ Headers’’ directory.

−gused
Emit debugging information for symbols that are used.For STABS debugging format, this enables
−feliminate−unused−debug−symbols. This is by defaultON.

−gfull
Emit debugging information for all symbols and types.

−mone−byte−bool
Override the defaults forbool so thatsizeof(bool)==1. By default sizeof(bool)is 4 when compiling
for Darwin/PowerPC and1 when compiling for Darwin/x86, so this option has no effect on x86.

Warning: The −mone−byte−boolswitch causesGCC to generate code that is not binary compatible
with code generated without that switch. Using this switch may require recompiling all other modules
in a program, including system libraries. Use this switch to conform to a non-default data model.

−mfix−and−continue
−ffix−and−continue
−findirect−data

Generate code suitable for fast turn around development. Neededto enable gdb to dynamically load
.o files into already running programs.−findirect−data and −ffix−and−continue are provided for
backwards compatibility.

−all_load
Loads all members of static archive libraries. Seemanld (1) for more information.

−arch_errors_fatal
Cause the errors having to do with files that have the wrong architecture to be fatal.

−bind_at_load
Causes the output file to be marked such that the dynamic linker will bind all undefined references
when the file is loaded or launched.

−bundle
Produce a Mach-o bundle format file. See manld (1) for more information.

−bundle_loaderexecutable
This option specifies theexecutablethat will be loading the build output file being linked. Seeman
ld (1) for more information.

−dynamiclib
When passed this option,GCC will produce a dynamic library instead of an executable when linking,
using the Darwinlibtool command.

gcc-4.0.3 2006-04-20 82

GCC(1) GNU GCC(1)

−force_cpusubtype_ALL
This causesGCC’s output file to have the ALL subtype, instead of one controlled by the−mcpu or
−march option.

−allowable_client client_name
−client_name
−compatibility_version
−current_version
−dead_strip
−dependency−file
−dylib_file
−dylinker_install_name
−dynamic
−exported_symbols_list
−filelist
−flat_namespace
−force_flat_namespace
−headerpad_max_install_names
−image_base
−init
−install_name
−keep_private_externs
−multi_module
−multiply_defined
−multiply_defined_unused
−noall_load
−no_dead_strip_inits_and_terms
−nofixprebinding
−nomultidefs
−noprebind
−noseglinkedit
−pagezero_size
−prebind
−prebind_all_twolevel_modules
−pri vate_bundle
−read_only_relocs
−sectalign
−sectobjectsymbols
−whyload
−seg1addr
−sectcreate
−sectobjectsymbols
−sectorder
−segaddr
−segs_read_only_addr
−segs_read_write_addr
−seg_addr_table
−seg_addr_table_filename
−seglinkedit
−segprot
−segs_read_only_addr
−segs_read_write_addr
−single_module

gcc-4.0.3 2006-04-20 83

GCC(1) GNU GCC(1)

−static
−sub_library
−sub_umbrella
−twolevel_namespace
−umbrella
−undefined
−unexported_symbols_list
−weak_reference_mismatches
−whatsloaded

These options are passed to the Darwin linker. The Darwin linker man page describes them in detail.

DEC Alpha Options

These−m options are defined for theDEC Alpha implementations:

−mno−soft−float
−msoft−float

Use (do not use) the hardware floating-point instructions for floating-point operations.When
−msoft−float is specified, functions inlibgcc.a will be used to perform floating-point operations.
Unless they are replaced by routines that emulate the floating-point operations, or compiled in such a
way as to call such emulations routines, these routines will issue floating-point operations. If you are
compiling for an Alpha without floating-point operations, you must ensure that the library is built so as
not to call them.

Note that Alpha implementations without floating-point operations are required to have floating-point
registers.

−mfp−reg
−mno−fp−regs

Generate code that uses (does not use) the floating-point register set.−mno−fp−regs implies
−msoft−float. If the floating-point register set is not used, floating point operands are passed in inte-
ger registers as if they were integers and floating-point results are passed in$0 instead of$f0 . This is
a non-standard calling sequence, so any function with a floating-point argument or return value called
by code compiled with−mno−fp−regsmust also be compiled with that option.

A typical use of this option is building a kernel that does not use, and hence need not save and restore,
any floating-point registers.

−mieee
The Alpha architecture implements floating-point hardware optimized for maximum performance.It
is mostly compliant with theIEEE floating point standard.However, for full compliance, software
assistance is required. This option generates code fullyIEEE compliant codeexcept that theinexact-
flag is not maintained (see below). If this option is turned on, the preprocessor macro_IEEE_FP is
defined during compilation. The resulting code is less efficient but is able to correctly support denor-
malized numbers and exceptionalIEEE values such as not-a-number and plus/minus infinity. Other
Alpha compilers call this option−ieee_with_no_inexact.

−mieee−with−inexact
This is like −mieeeexcept the generated code also maintains theIEEE inexact-flag. Turning on this
option causes the generated code to implement fully-compliantIEEE math. Inaddition to_IEEE_FP ,
_IEEE_FP_EXACT is defined as a preprocessor macro. On some Alpha implementations the result-
ing code may execute significantly slower than the code generated by default. Sincethere is very little
code that depends on theinexact-flag, you should normally not specify this option. Other Alpha com-
pilers call this option−ieee_with_inexact.

−mfp−trap−mode=trap-mode
This option controls what floating-point related traps are enabled. Other Alpha compilers call this
option−fptm trap-mode. The trap mode can be set to one of four values:

gcc-4.0.3 2006-04-20 84

GCC(1) GNU GCC(1)

n This is the default (normal) setting.The only traps that are enabled are the ones that cannot be
disabled in software (e.g., division by zero trap).

u In addition to the traps enabled byn, underflow traps are enabled as well.

su Like su, but the instructions are marked to be safe for software completion (see Alpha architec-
ture manual for details).

sui Like su, but inexact traps are enabled as well.

−mfp−rounding−mode=rounding-mode
Selects theIEEE rounding mode.Other Alpha compilers call this option−fprm rounding-mode. The
rounding-modecan be one of:

n Normal IEEE rounding mode. Floating point numbers are rounded towards the nearest machine
number or towards the even machine number in case of a tie.

m Round towards minus infinity.

c Chopped rounding mode. Floating point numbers are rounded towards zero.

d Dynamic rounding mode.A field in the floating point control register (fpcr, see Alpha architec-
ture reference manual) controls the rounding mode in effect. TheC library initializes this register
for rounding towards plus infinity. Thus, unless your program modifies thefpcr, d corresponds to
round towards plus infinity.

−mtrap−precision=trap-precision
In the Alpha architecture, floating point traps are imprecise. This means without software assistance it
is impossible to recover from a floating trap and program execution normally needs to be terminated.
GCCcan generate code that can assist operating system trap handlers in determining the exact location
that caused a floating point trap. Depending on the requirements of an application, different levels of
precisions can be selected:

p Program precision. This option is the default and means a trap handler can only identify which
program caused a floating point exception.

f Function precision.The trap handler can determine the function that caused a floating point
exception.

i Instruction precision. The trap handler can determine the exact instruction that caused a floating
point exception.

Other Alpha compilers provide the equivalent options called−scope_safeand−resumption_safe.

−mieee−conformant
This option marks the generated code asIEEE conformant. You must not use this option unless you
also specify−mtrap−precision=i and either−mfp−trap−mode=su or −mfp−trap−mode=sui. Its
only effect is to emit the line.eflag 48in the function prologue of the generated assembly file.Under
DEC Unix, this has the effect that IEEE-conformant math library routines will be linked in.

−mbuild−constants
Normally GCCexamines a 32− or 64−bit integer constant to see if it can construct it from smaller con-
stants in two or three instructions. If it cannot, it will output the constant as a literal and generate code
to load it from the data segment at runtime.

Use this option to requireGCC to constructall integer constants using code, even if it takes more
instructions (the maximum is six).

You would typically use this option to build a shared library dynamic loader. Itself a shared library, it
must relocate itself in memory before it can find the variables and constants in its own data segment.

−malpha−as
−mgas

Select whether to generate code to be assembled by the vendor-supplied assembler (−malpha−as) or
by theGNU assembler−mgas.

gcc-4.0.3 2006-04-20 85

GCC(1) GNU GCC(1)

−mbwx
−mno−bwx
−mcix
−mno−cix
−mfix
−mno−fix
−mmax
−mno−max

Indicate whetherGCC should generate code to use the optionalBWX, CIX, FIX andMAX instruction
sets. Thedefault is to use the instruction sets supported by theCPU type specified via−mcpu= option
or that of theCPUon whichGCCwas built if none was specified.

−mfloat−vax
−mfloat−ieee

Generate code that uses (does not use)VAX F and G floating point arithmetic instead ofIEEE single
and double precision.

−mexplicit−relocs
−mno−explicit−relocs

Older Alpha assemblers provided no way to generate symbol relocations except via assembler macros.
Use of these macros does not allow optimal instruction scheduling.GNU binutils as of version 2.12
supports a new syntax that allows the compiler to explicitly mark which relocations should apply to
which instructions.This option is mostly useful for debugging, asGCC detects the capabilities of the
assembler when it is built and sets the default accordingly.

−msmall−data
−mlarge−data

When −mexplicit−relocs is in effect, static data is accessed viagp-relative relocations. When
−msmall−data is used, objects 8 bytes long or smaller are placed in asmall data area (the .sdata
and .sbss sections) and are accessed via 16−bit relocations off of the $gp register. This limits the
size of the small data area to 64KB, but allows the variables to be directly accessed via a single
instruction.

The default is−mlarge−data. With this option the data area is limited to just below 2GB. Programs
that require more than 2GB of data must usemalloc or mmapto allocate the data in the heap instead
of in the program’s data segment.

When generating code for shared libraries,−fpic implies −msmall−data and −fPIC implies
−mlarge−data.

−msmall−text
−mlarge−text

When −msmall−text is used, the compiler assumes that the code of the entire program (or shared
library) fits in 4MB, and is thus reachable with a branch instruction.When−msmall−data is used, the
compiler can assume that all local symbols share the same$gp value, and thus reduce the number of
instructions required for a function call from 4 to 1.

The default is−mlarge−text.

−mcpu=cpu_type
Set the instruction set and instruction scheduling parameters for machine typecpu_type. You can
specify either theEV style name or the corresponding chip number. GCCsupports scheduling parame-
ters for theEV4, EV5 andEV6 family of processors and will choose the default values for the instruc-
tion set from the processor you specify. If you do not specify a processor type,GCCwill default to the
processor on which the compiler was built.

Supported values forcpu_typeare

ev4

gcc-4.0.3 2006-04-20 86

GCC(1) GNU GCC(1)

ev45
21064

Schedules as anEV4 and has no instruction set extensions.

ev5
21164

Schedules as anEV5 and has no instruction set extensions.

ev56
21164a

Schedules as anEV5 and supports theBWX extension.

pca56
21164pc
21164PC

Schedules as anEV5 and supports theBWX andMAX extensions.

ev6
21264

Schedules as anEV6 and supports theBWX, FIX, and MAX extensions.

ev67
21264a

Schedules as anEV6 and supports theBWX, CIX, FIX, and MAX extensions.

−mtune=cpu_type
Set only the instruction scheduling parameters for machine typecpu_type. The instruction set is not
changed.

−mmemory−latency=time
Sets the latency the scheduler should assume for typical memory references as seen by the application.
This number is highly dependent on the memory access patterns used by the application and the size
of the external cache on the machine.

Valid options fortimeare

number
A decimal number representing clock cycles.

L1
L2
L3
main

The compiler contains estimates of the number of clock cycles for ‘‘typical’’ EV4 & EV5 hard-
ware for the Level 1, 2 & 3 caches (also called Dcache, Scache, and Bcache), as well as to main
memory. Note that L3 is only valid forEV5.

DEC Alpha/VMS Options

These−m options are defined for theDEC Alpha/VMS implementations:

−mvms−return−codes
ReturnVMS condition codes from main.The default is to returnPOSIX style condition (e.g. error)
codes.

FRVOptions

−mgpr−32
Only use the first 32 general purpose registers.

−mgpr−64
Use all 64 general purpose registers.

gcc-4.0.3 2006-04-20 87

GCC(1) GNU GCC(1)

−mfpr−32
Use only the first 32 floating point registers.

−mfpr−64
Use all 64 floating point registers

−mhard−float
Use hardware instructions for floating point operations.

−msoft−float
Use library routines for floating point operations.

−malloc−cc
Dynamically allocate condition code registers.

−mfixed−cc
Do not try to dynamically allocate condition code registers, only useicc0 andfcc0 .

−mdword
ChangeABI to use double word insns.

−mno−dword
Do not use double word instructions.

−mdouble
Use floating point double instructions.

−mno−double
Do not use floating point double instructions.

−mmedia
Use media instructions.

−mno−media
Do not use media instructions.

−mmuladd
Use multiply and add/subtract instructions.

−mno−muladd
Do not use multiply and add/subtract instructions.

−mfdpic
Select theFDPIC ABI, that uses function descriptors to represent pointers to functions.Without any
PIC/PIE−related options, it implies−fPIE . With −fpic or −fpie, it assumesGOT entries and small data
are within a 12−bit range from theGOT base address; with−fPIC or −fPIE , GOT offsets are computed
with 32 bits.

−minline−plt
Enable inlining ofPLT entries in function calls to functions that are not known to bind locally. It has
no effect without−mfdpic. It’s enabled by default if optimizing for speed and compiling for shared
libraries (i.e.,−fPIC or −fpic), or when an optimization option such as−O3 or above is present in the
command line.

−mTLS
Assume a largeTLS segment when generating thread-local code.

−mtls
Do not assume a largeTLS segment when generating thread-local code.

−mgprel−ro
Enable the use ofGPRELrelocations in theFDPIC ABI for data that is known to be in read-only sec-
tions. It’s enabled by default, except for−fpic or −fpie: even though it may help make the global off-
set table smaller, it trades 1 instruction for 4.With −fPIC or −fPIE , it trades 3 instructions for 4, one
of which may be shared by multiple symbols, and it avoids the need for aGOT entry for the referenced

gcc-4.0.3 2006-04-20 88

GCC(1) GNU GCC(1)

symbol, so it’s more likely to be a win. If it is not,−mno−gprel−ro can be used to disable it.

−multilib−library−pic
Link with the (library, not FD) pic libraries. It’s implied by−mlibrary−pic , as well as by−fPIC and
−fpic without−mfdpic. You should never hav eto use it explicitly.

−mlinked−fp
Follow the EABI requirement of always creating a frame pointer whenever a stack frame is allocated.
This option is enabled by default and can be disabled with−mno−linked−fp.

−mlong−calls
Use indirect addressing to call functions outside the current compilation unit. This allows the func-
tions to be placed anywhere within the 32−bit address space.

−malign−labels
Try to align labels to an 8−byte boundary by inserting nops into the previous packet. Thisoption only
has an effect whenVLIW packing is enabled. It doesn’t create new packets; it merely adds nops to
existing ones.

−mlibrary−pic
Generate position-independentEABI code.

−macc−4
Use only the first four media accumulator registers.

−macc−8
Use all eight media accumulator registers.

−mpack
Pack VLIW instructions.

−mno−pack
Do not packVLIW instructions.

−mno−eflags
Do not markABI switches in e_flags.

−mcond−move
Enable the use of conditional-move instructions (default).

This switch is mainly for debugging the compiler and will likely be removed in a future version.

−mno−cond−move
Disable the use of conditional-move instructions.

This switch is mainly for debugging the compiler and will likely be removed in a future version.

−mscc
Enable the use of conditional set instructions (default).

This switch is mainly for debugging the compiler and will likely be removed in a future version.

−mno−scc
Disable the use of conditional set instructions.

This switch is mainly for debugging the compiler and will likely be removed in a future version.

−mcond−exec
Enable the use of conditional execution (default).

This switch is mainly for debugging the compiler and will likely be removed in a future version.

−mno−cond−exec
Disable the use of conditional execution.

This switch is mainly for debugging the compiler and will likely be removed in a future version.

gcc-4.0.3 2006-04-20 89

GCC(1) GNU GCC(1)

−mvliw−branch
Run a pass to pack branches intoVLIW instructions (default).

This switch is mainly for debugging the compiler and will likely be removed in a future version.

−mno−vliw−branch
Do not run a pass to pack branches intoVLIW instructions.

This switch is mainly for debugging the compiler and will likely be removed in a future version.

−mmulti−cond−exec
Enable optimization of&&and in conditional execution (default).

This switch is mainly for debugging the compiler and will likely be removed in a future version.

−mno−multi−cond−exec
Disable optimization of&&and in conditional execution.

This switch is mainly for debugging the compiler and will likely be removed in a future version.

−mnested−cond−exec
Enable nested conditional execution optimizations (default).

This switch is mainly for debugging the compiler and will likely be removed in a future version.

−mno−nested−cond−exec
Disable nested conditional execution optimizations.

This switch is mainly for debugging the compiler and will likely be removed in a future version.

−mtomcat−stats
Cause gas to print out tomcat statistics.

−mcpu=cpu
Select the processor type for which to generate code. Possible values arefrv , fr550, tomcat, fr500,
fr450, fr405, fr400, fr300 andsimple.

H8/300 Options

These−m options are defined for the H8/300 implementations:

−mrelax
Shorten some address references at link time, when possible; uses the linker option−relax.

−mh
Generate code for the H8/300H.

−ms
Generate code for the H8S.

−mn
Generate code for the H8S and H8/300H in the normal mode.This switch must be used either with
−mh or −ms.

−ms2600
Generate code for the H8S/2600. This switch must be used with−ms.

−mint32
Make int data 32 bits by default.

−malign−300
On the H8/300H and H8S, use the same alignment rules as for the H8/300. The default for the
H8/300H and H8S is to align longs and floats on 4 byte boundaries.−malign−300causes them to be
aligned on 2 byte boundaries. This option has no effect on the H8/300.

HPPAOptions

These−m options are defined for theHPPA family of computers:

gcc-4.0.3 2006-04-20 90

GCC(1) GNU GCC(1)

−march=architecture-type
Generate code for the specified architecture. The choices forarchitecture-typeare1.0 for PA 1.0,1.1
for PA 1.1, and2.0 for PA 2.0 processors. Refer to/usr/lib/sched.modelson an HP-UX system to
determine the proper architecture option for your machine.Code compiled for lower numbered archi-
tectures will run on higher numbered architectures, but not the other way around.

−mpa−risc−1−0
−mpa−risc−1−1
−mpa−risc−2−0

Synonyms for−march=1.0, −march=1.1, and−march=2.0respectively.

−mbig−switch
Generate code suitable for big switch tables. Use this option only if the assembler/linker complain
about out of range branches within a switch table.

−mjump−in−delay
Fill delay slots of function calls with unconditional jump instructions by modifying the return pointer
for the function call to be the target of the conditional jump.

−mdisable−fpregs
Prevent floating point registers from being used in any manner. This is necessary for compiling ker-
nels which perform lazy context switching of floating point registers. If you use this option and
attempt to perform floating point operations, the compiler will abort.

−mdisable−indexing
Prevent the compiler from using indexing address modes. This avoids some rather obscure problems
when compilingMIG generated code underMACH.

−mno−space−regs
Generate code that assumes the target has no space registers. ThisallowsGCC to generate faster indi-
rect calls and use unscaled index address modes.

Such code is suitable for level 0 PA systems and kernels.

−mfast−indirect−calls
Generate code that assumes calls never cross space boundaries. This allows GCC to emit code which
performs faster indirect calls.

This option will not work in the presence of shared libraries or nested functions.

−mfixed−range=register-range
Generate code treating the given register range as fixed registers. Afixed register is one that the regis-
ter allocator can not use. This is useful when compiling kernel code.A register range is specified as
two registers separated by a dash. Multiple register ranges can be specified separated by a comma.

−mlong−load−store
Generate 3−instruction load and store sequences as sometimes required by the HP-UX 10 linker. This
is equivalent to the+k option to theHP compilers.

−mportable−runtime
Use the portable calling conventions proposed byHP for ELF systems.

−mgas
Enable the use of assembler directives only GAS understands.

−mschedule=cpu-type
Schedule code according to the constraints for the machine typecpu-type. The choices forcpu-type
are700 7100, 7100LC, 7200, 7300and8000. Refer to/usr/lib/sched.modelson an HP-UX system to
determine the proper scheduling option for your machine. The default scheduling is8000.

−mlinker−opt
Enable the optimization pass in the HP-UX linker. Note this makes symbolic debugging impossible.
It also triggers a bug in the HP-UX 8 and HP-UX 9 linkers in which they giv e bogus error messages

gcc-4.0.3 2006-04-20 91

GCC(1) GNU GCC(1)

when linking some programs.

−msoft−float
Generate output containing library calls for floating point.Warning: the requisite libraries are not
available for allHPPA targets. Normallythe facilities of the machine’s usual C compiler are used, but
this cannot be done directly in cross−compilation.You must make your own arrangements to provide
suitable library functions for cross−compilation. The embedded target hppa1.1−*−pro does provide
software floating point support.

−msoft−float changes the calling convention in the output file; therefore, it is only useful if you com-
pile all of a program with this option.In particular, you need to compilelibgcc.a, the library that
comes withGCC, with −msoft−float in order for this to work.

−msio
Generate the predefine,_SIO , for server IO. The default is−mwsio. This generates the predefines,
_ _hp9000s700 , _ _hp9000s700_ _ and_WSIO, for workstationIO. These options are available
under HP-UX andHI−UX.

−mgnu−ld
Use GNU ld specific options.This passes−shared to ld when building a shared library. It is the
default whenGCC is configured, explicitly or implicitly, with the GNU linker. This option does not
have any affect on which ld is called, it only changes what parameters are passed to that ld.The ld
that is called is determined by the−−with−ld configure option,GCC’s program search path, and finally
by the user’s PATH . The linker used by GCC can be printed usingwhich ‘gcc
−print−prog−name=ld‘ . This option is only available on the 64 bit HP-UXGCC, i.e. configured with
hppa*64*−*−hpux* .

−mhp−ld
UseHP ld specific options. This passes−b to ld when building a shared library and passes+Accept
TypeMismatch to ld on all links. It is the default whenGCC is configured, explicitly or implicitly,
with the HP linker. This option does not have any affect on which ld is called, it only changes what
parameters are passed to that ld.The ld that is called is determined by the−−with−ld configure
option, GCC’s program search path, and finally by the user’s PATH . The linker used byGCC can be
printed usingwhich ‘gcc −print−pr og−name=ld‘. This option is only available on the 64 bit HP-UX
GCC, i.e. configured withhppa*64*−*−hpux* .

−mlong−calls
Generate code that uses long call sequences.This ensures that a call is always able to reach linker
generated stubs. The default is to generate long calls only when the distance from the call site to the
beginning of the function or translation unit, as the case may be, exceeds a predefined limit set by the
branch type being used. The limits for normal calls are 7,600,000 and 240,000 bytes, respectively for
thePA 2.0 andPA 1.X architectures. Sibcalls are always limited at 240,000 bytes.

Distances are measured from the beginning of functions when using the−ffunction−sectionsoption,
or when using the−mgasand−mno−portable−runtime options together under HP-UX with theSOM
linker.

It is normally not desirable to use this option as it will degrade performance.However, it may be use-
ful in large applications, particularly when partial linking is used to build the application.

The types of long calls used depends on the capabilities of the assembler and linker, and the type of
code being generated.The impact on systems that support long absolute calls, and long pic symbol-
difference or pc-relative calls should be relatively small. However, an indirect call is used on 32−bit
ELF systems in pic code and it is quite long.

−munix=unix-std
Generate compiler predefines and select a startfile for the specifiedUNIX standard. Thechoices for
unix-stdare93, 95 and98. 93 is supported on all HP-UX versions. 95 is available on HP-UX 10.10
and later. 98 is available on HP-UX 11.11 and later. The default values are93 for HP-UX 10.00,95
for HP-UX 10.10 though to 11.00, and98 for HP-UX 11.11 and later.

gcc-4.0.3 2006-04-20 92

GCC(1) GNU GCC(1)

−munix=93 provides the same predefines asGCC3.3 and 3.4.−munix=95 provides additional prede-
fines forXOPEN_UNIXand_XOPEN_SOURCE_EXTENDED, and the startfileunix95.o. −munix=98
provides additional predefines for _XOPEN_UNIX, _XOPEN_SOURCE_EXTENDED,
INCLUDE _STDC_A1_SOURCE and _INCLUDE_XOPEN_SOURCE_500, and the startfile
unix98.o.

It is importantto note that this option changes the interfaces for various library routines.It also affects
the operational behavior of the C library. Thus,extremecare is needed in using this option.

Library code that is intended to operate with more than oneUNIX standard must test, set and restore
the variable_ _xpg4_extended_maskas appropriate.Most GNU software doesn’t provide this capabil-
ity.

−nolibdld
Suppress the generation of link options to search libdld.sl when the−static option is specified on HP-
UX 10 and later.

−static
The HP-UX implementation of setlocale in libc has a dependency on libdld.sl. Thereisn’t an archive
version of libdld.sl. Thus, when the−static option is specified, special link options are needed to
resolve this dependency.

On HP-UX 10 and later, the GCC driver adds the necessary options to link with libdld.sl when the
−static option is specified. This causes the resulting binary to be dynamic. On the 64−bit port, the
linkers generate dynamic binaries by default in any case. The−nolibdld option can be used to prevent
theGCCdriver from adding these link options.

−threads
Add support for multithreading with thedce thread library underHP−UX. This option sets flags for
both the preprocessor and linker.

Intel 386 andAMD x86−64 Options

These−m options are defined for the i386 and x86−64 family of computers:

−mtune=cpu-type
Tune tocpu-typeev erything applicable about the generated code, except for theABI and the set of
available instructions. The choices forcpu-typeare:

i386
Original Intel’s i386CPU.

i486
Intel’s i486CPU. (No scheduling is implemented for this chip.)

i586, pentium
Intel PentiumCPUwith noMMX support.

pentium-mmx
Intel PentiumMMXCPUbased on Pentium core withMMX instruction set support.

i686, pentiumpro
Intel PentiumProCPU.

pentium2
Intel Pentium2CPUbased on PentiumPro core withMMX instruction set support.

pentium3, pentium3m
Intel Pentium3CPUbased on PentiumPro core withMMX andSSEinstruction set support.

pentium-m
Low power version of Intel Pentium3CPU with MMX , SSE and SSE2 instruction set support.
Used by Centrino notebooks.

gcc-4.0.3 2006-04-20 93

GCC(1) GNU GCC(1)

pentium4, pentium4m
Intel Pentium4CPUwith MMX , SSEandSSE2instruction set support.

prescott
Improved version of Intel Pentium4CPU with MMX , SSE, SSE2andSSE3instruction set support.

nocona
Improved version of Intel Pentium4CPU with 64−bit extensions,MMX , SSE, SSE2and SSE3
instruction set support.

k6 AMD K6 CPUwith MMX instruction set support.

k6−2, k6−3
Improved versions ofAMD K6 CPUwith MMX and 3dNOW! instruction set support.

athlon, athlon-tbird
AMD Athlon CPU with MMX , 3dNOW!, enhanced 3dNOW! andSSEprefetch instructions sup-
port.

athlon−4, athlon−xp, athlon-mp
Improved AMD Athlon CPUwith MMX , 3dNOW!, enhanced 3dNOW! and fullSSEinstruction set
support.

k8, opteron, athlon64, athlon-fx
AMD K8 core based CPUs with x86−64 instruction set support.(This supersetsMMX , SSE,
SSE2, 3dNOW!, enhanced 3dNOW! and 64−bit instruction set extensions.)

winchip−c6
IDT Winchip C6CPU, dealt in same way as i486 with additionalMMX instruction set support.

winchip2
IDT Winchip2CPU, dealt in same way as i486 with additionalMMX and 3dNOW! instructionset
support.

c3 Via C3 CPUwith MMX and 3dNOW! instruction set support.(No scheduling is implemented for
this chip.)

c3−2
Via C3−2 CPU with MMX andSSE instruction set support. (No scheduling is implemented for
this chip.)

While picking a specificcpu-typewill schedule things appropriately for that particular chip, the com-
piler will not generate any code that does not run on the i386 without the−march=cpu-typeoption
being used.

−march=cpu-type
Generate instructions for the machine typecpu-type. The choices forcpu-typeare the same as for
−mtune. Moreover, specifying−march=cpu-typeimplies−mtune=cpu-type.

−mcpu=cpu-type
A deprecated synonym for−mtune.

−m386
−m486
−mpentium
−mpentiumpro

These options are synonyms for−mtune=i386, −mtune=i486, −mtune=pentium, and −mtune=pen-
tiumpro respectively. These synonyms are deprecated.

−mfpmath=unit
Generate floating point arithmetics for selected unitunit. The choices forunit are:

387 Use the standard 387 floating point coprocessor present majority of chips and emulated other-
wise. Codecompiled with this option will run almost everywhere. Thetemporary results are
computed in 80bit precision instead of precision specified by the type resulting in slightly

gcc-4.0.3 2006-04-20 94

GCC(1) GNU GCC(1)

different results compared to most of other chips.See−ffloat−store for more detailed descrip-
tion.

This is the default choice for i386 compiler.

sse Use scalar floating point instructions present in theSSE instruction set. This instruction set is
supported by Pentium3 and newer chips, in theAMD line by Athlon−4, Athlon-xp and Athlon-mp
chips. Theearlier version ofSSE instruction set supports only single precision arithmetics, thus
the double and extended precision arithmetics is still done using 387.Later version, present only
in Pentium4 and the futureAMD x86−64 chips supports double precision arithmetics too.

For the i386 compiler, you need to use−march=cpu-type, −msseor −msse2switches to enable
SSE extensions and make this option effective. For the x86−64 compiler, these extensions are
enabled by default.

The resulting code should be considerably faster in the majority of cases and avoid the numerical
instability problems of 387 code, but may break some existing code that expects temporaries to
be 80bit.

This is the default choice for the x86−64 compiler.

sse,387
Attempt to utilize both instruction sets at once.This effectively double the amount of available
registers and on chips with separate execution units for 387 andSSEthe execution resources too.
Use this option with care, as it is still experimental, because theGCC register allocator does not
model separate functional units well resulting in instable performance.

−masm=dialect
Output asm instructions using selecteddialect. Supported choices areintel or att (the default one).

−mieee−fp
−mno−ieee−fp

Control whether or not the compiler usesIEEE floating point comparisons. These handle correctly the
case where the result of a comparison is unordered.

−msoft−float
Generate output containing library calls for floating point.Warning: the requisite libraries are not
part ofGCC. Normally the facilities of the machine’s usual C compiler are used, but this can’t be done
directly in cross−compilation.You must make your own arrangements to provide suitable library
functions for cross−compilation.

On machines where a function returns floating point results in the 80387 register stack, some floating
point opcodes may be emitted even if −msoft−float is used.

−mno−fp−ret−in−387
Do not use theFPU registers for return values of functions.

The usual calling convention has functions return values of typesfloat anddouble in anFPU reg-
ister, even if there is noFPU. The idea is that the operating system should emulate anFPU.

The option−mno−fp−ret−in−387 causes such values to be returned in ordinaryCPU registers instead.

−mno−fancy−math−387
Some 387 emulators do not support thesin , cos andsqrt instructions for the 387. Specify this
option to avoid generating those instructions. This option is the default on FreeBSD, OpenBSD and
NetBSD. Thisoption is overridden when−march indicates that the target cpu will always have an
FPU and so the instruction will not need emulation.As of revision 2.6.1, these instructions are not
generated unless you also use the−funsafe−math−optimizationsswitch.

−malign−double
−mno−align−double

Control whetherGCC alignsdouble , long double , and long long variables on a two word
boundary or a one word boundary. Aligning double variables on a two word boundary will produce

gcc-4.0.3 2006-04-20 95

GCC(1) GNU GCC(1)

code that runs somewhat faster on aPentium at the expense of more memory.

Warning: if you use the−malign−double switch, structures containing the above types will be
aligned differently than the published application binary interface specifications for the 386 and will
not be binary compatible with structures in code compiled without that switch.

−m96bit−long−double
−m128bit−long−double

These switches control the size oflong double type. Thei386 application binary interface speci-
fies the size to be 96 bits, so−m96bit−long−doubleis the default in 32 bit mode.

Modern architectures (Pentium and newer) would preferlong double to be aligned to an 8 or 16
byte boundary. In arrays or structures conforming to theABI , this would not be possible. So specify-
ing a−m128bit−long−doublewill align long double to a 16 byte boundary by padding thelong
double with an additional 32 bit zero.

In the x86−64 compiler, −m128bit−long−doubleis the default choice as itsABI specifies thatlong
double is to be aligned on 16 byte boundary.

Notice that neither of these options enable any extra precision over the x87 standard of 80 bits for a
long double .

Warning: if you override the default value for your target ABI , the structures and arrays containing
long double variables will change their size as well as function calling convention for function
taking long double will be modified. Hence they will not be binary compatible with arrays or
structures in code compiled without that switch.

−msvr3−shlib
−mno−svr3−shlib

Control whether GCC places uninitialized local variables into thebss or data segments.
−msvr3−shlib places them intobss . These options are meaningful only on System V Release 3.

−mrtd
Use a different function-calling convention, in which functions that take a fixed number of arguments
return with theret num instruction, which pops their arguments while returning. This saves one
instruction in the caller since there is no need to pop the arguments there.

You can specify that an individual function is called with this calling sequence with the function
attributestdcall. You can also override the−mrtd option by using the function attributecdecl.

Warning: this calling convention is incompatible with the one normally used on Unix, so you cannot
use it if you need to call libraries compiled with the Unix compiler.

Also, you must provide function prototypes for all functions that take variable numbers of arguments
(includingprintf); otherwise incorrect code will be generated for calls to those functions.

In addition, seriously incorrect code will result if you call a function with too many arguments. (Nor-
mally, extra arguments are harmlessly ignored.)

−mregparm=num
Control how many registers are used to pass integer arguments. Bydefault, no registers are used to
pass arguments, and at most 3 registers can be used.You can control this behavior for a specific func-
tion by using the function attributeregparm.

Warning: if you use this switch, andnum is nonzero, then you must build all modules with the same
value, including any libraries. Thisincludes the system libraries and startup modules.

−mpreferred−stack−boundary=num
Attempt to keep the stack boundary aligned to a 2 raised tonum byte boundary. If −mpre-
ferred−stack−boundary is not specified, the default is 4 (16 bytes or 128 bits), except when optimiz-
ing for code size (−Os), in which case the default is the minimum correct alignment (4 bytes for x86,
and 8 bytes for x86−64).

gcc-4.0.3 2006-04-20 96

GCC(1) GNU GCC(1)

On Pentium and PentiumPro,double and long double values should be aligned to an 8 byte
boundary (see−malign−double) or suffer significant run time performance penalties.On PentiumIII ,
the StreamingSIMD Extension (SSE) data type_ _m128 suffers similar penalties if it is not 16 byte
aligned.

To ensure proper alignment of this values on the stack, the stack boundary must be as aligned as that
required by any value stored on the stack.Further, every function must be generated such that it keeps
the stack aligned. Thus calling a function compiled with a higher preferred stack boundary from a
function compiled with a lower preferred stack boundary will most likely misalign the stack. It is rec-
ommended that libraries that use callbacks always use the default setting.

This extra alignment does consume extra stack space, and generally increases code size. Code that is
sensitive to stack space usage, such as embedded systems and operating system kernels, may want to
reduce the preferred alignment to−mpreferred−stack−boundary=2.

−mmmx
−mno−mmx
−msse
−mno−sse
−msse2
−mno−sse2
−msse3
−mno−sse3
−m3dnow
−mno−3dnow

These switches enable or disable the use of built-in functions that allow direct access to theMMX ,
SSE, SSE2, SSE3and 3Dnow extensions of the instruction set.

To hav eSSE/SSE2instructions generated automatically from floating-point code, see−mfpmath=sse.

−mpush−args
−mno−push−args

UsePUSHoperations to store outgoing parameters. This method is shorter and usually equally fast as
method usingSUB/MOV operations and is enabled by default. Insome cases disabling it may improve
performance because of improved scheduling and reduced dependencies.

−maccumulate−outgoing−args
If enabled, the maximum amount of space required for outgoing arguments will be computed in the
function prologue. This is faster on most modern CPUs because of reduced dependencies, improved
scheduling and reduced stack usage when preferred stack boundary is not equal to 2.The drawback is
a notable increase in code size. This switch implies−mno−push−args.

−mthreads
Support thread-safe exception handling onMingw32. Code that relies on thread-safe exception han-
dling must compile and link all code with the−mthreads option. Whencompiling, −mthreads
defines−D_MT ; when linking, it links in a special thread helper library−lmingwthrd which cleans
up per thread exception handling data.

−mno−align−stringops
Do not align destination of inlined string operations.This switch reduces code size and improves per-
formance in case the destination is already aligned, butGCCdoesn’t know about it.

−minline−all−stringops
By default GCC inlines string operations only when destination is known to be aligned at least to 4
byte boundary. This enables more inlining, increase code size, but may improve performance of code
that depends on fast memcpy, strlen and memset for short lengths.

−momit−leaf−frame−pointer
Don’t keep the frame pointer in a register for leaf functions. This avoids the instructions to save, set
up and restore frame pointers and makes an extra register available in leaf functions. The option

gcc-4.0.3 2006-04-20 97

GCC(1) GNU GCC(1)

−fomit−frame−pointer removes the frame pointer for all functions which might make debugging
harder.

−mtls−direct−seg−refs
−mno−tls−direct−seg−refs

Controls whetherTLS variables may be accessed with offsets from theTLS segment register (%gs for
32−bit, %fs for 64−bit), or whether the thread base pointer must be added.Whether or not this is
legal depends on the operating system, and whether it maps the segment to cover the entireTLS area.

For systems that useGNU libc, the default is on.

These−m switches are supported in addition to the above on AMD x86−64 processors in 64−bit environ-
ments.

−m32
−m64

Generate code for a 32−bit or 64−bit environment. The32−bit environment sets int, long and pointer
to 32 bits and generates code that runs on any i386 system. The 64−bit environment sets int to 32 bits
and long and pointer to 64 bits and generates code forAMD ’s x86−64 architecture.

−mno−red−zone
Do not use a so called red zone for x86−64 code.The red zone is mandated by the x86−64ABI , it is a
128−byte area beyond the location of the stack pointer that will not be modified by signal or interrupt
handlers and therefore can be used for temporary data without adjusting the stack pointer. The flag
−mno−red−zonedisables this red zone.

−mcmodel=small
Generate code for the small code model: the program and its symbols must be linked in the lower 2GB
of the address space. Pointers are 64 bits.Programs can be statically or dynamically linked. Thisis
the default code model.

−mcmodel=kernel
Generate code for the kernel code model. The kernel runs in the negative 2GB of the address space.
This model has to be used for Linux kernel code.

−mcmodel=medium
Generate code for the medium model: The program is linked in the lower 2GB of the address space
but symbols can be located anywhere in the address space.Programs can be statically or dynamically
linked, but building of shared libraries are not supported with the medium model.

−mcmodel=large
Generate code for the large model: This model makes no assumptions about addresses and sizes of
sections. CurrentlyGCCdoes not implement this model.

IA−64 Options

These are the−m options defined for the IntelIA−64 architecture.

−mbig−endian
Generate code for a big endian target. Thisis the default forHP−UX.

−mlittle−endian
Generate code for a little endian target. Thisis the default forAIX5 and GNU/Linux.

−mgnu−as
−mno−gnu−as

Generate (or don’t) code for theGNU assembler. This is the default.

−mgnu−ld
−mno−gnu−ld

Generate (or don’t) code for theGNU linker. This is the default.

gcc-4.0.3 2006-04-20 98

GCC(1) GNU GCC(1)

−mno−pic
Generate code that does not use a global pointer register. The result is not position independent code,
and violates theIA−64 ABI.

−mvolatile−asm−stop
−mno−volatile−asm−stop

Generate (or don’t) a stop bit immediately before and after volatile asm statements.

−mregister−names
−mno−register−names

Generate (or don’t) in, loc, and out register names for the stacked registers. Thismay make assembler
output more readable.

−mno−sdata
−msdata

Disable (or enable) optimizations that use the small data section.This may be useful for working
around optimizer bugs.

−mconstant−gp
Generate code that uses a single constant global pointer value. Thisis useful when compiling kernel
code.

−mauto−pic
Generate code that is self−relocatable. This implies−mconstant−gp. This is useful when compiling
firmware code.

−minline−float−divide−min−latency
Generate code for inline divides of floating point values using the minimum latency algorithm.

−minline−float−divide−max−throughput
Generate code for inline divides of floating point values using the maximum throughput algorithm.

−minline−int−divide−min−latency
Generate code for inline divides of integer values using the minimum latency algorithm.

−minline−int−divide−max−throughput
Generate code for inline divides of integer values using the maximum throughput algorithm.

−minline−sqrt−min−latency
Generate code for inline square roots using the minimum latency algorithm.

−minline−sqrt−max−throughput
Generate code for inline square roots using the maximum throughput algorithm.

−mno−dwarf2−asm
−mdwarf2−asm

Don’t (or do) generate assembler code for theDWARF2 line number debugging info.This may be use-
ful when not using theGNU assembler.

−mearly−stop−bits
−mno−early−stop−bits

Allow stop bits to be placed earlier than immediately preceding the instruction that triggered the stop
bit. Thiscan improve instruction scheduling, but does not always do so.

−mfixed−range=register-range
Generate code treating the given register range as fixed registers. Afixed register is one that the regis-
ter allocator can not use.This is useful when compiling kernel code.A register range is specified as
two registers separated by a dash. Multiple register ranges can be specified separated by a comma.

−mtls−size=tls-size
Specify bit size of immediateTLS offsets. Valid values are 14, 22, and 64.

gcc-4.0.3 2006-04-20 99

GCC(1) GNU GCC(1)

−mtune=cpu-type
Tune the instruction scheduling for a particularCPU, Valid values are itanium, itanium1, merced, ita-
nium2, and mckinley.

−mt
−pthread

Add support for multithreading using thePOSIX threads library. This option sets flags for both the
preprocessor and linker. It does not affect the thread safety of object code produced by the compiler or
that of libraries supplied with it. These are HP-UX specific flags.

−milp32
−mlp64

Generate code for a 32−bit or 64−bit environment. The32−bit environment sets int, long and pointer
to 32 bits. The 64−bit environment sets int to 32 bits and long and pointer to 64 bits. These are HP-
UX specific flags.

M32R/D Options

These−m options are defined for Renesas M32R/D architectures:

−m32r2
Generate code for the M32R/2.

−m32rx
Generate code for the M32R/X.

−m32r
Generate code for the M32R. This is the default.

−mmodel=small
Assume all objects live in the lower 16MB of memory (so that their addresses can be loaded with the
ld24 instruction), and assume all subroutines are reachable with thebl instruction. Thisis the
default.

The addressability of a particular object can be set with themodel attribute.

−mmodel=medium
Assume objects may be anywhere in the 32−bit address space (the compiler will generate
seth/add3 instructions to load their addresses), and assume all subroutines are reachable with the
bl instruction.

−mmodel=large
Assume objects may be anywhere in the 32−bit address space (the compiler will generate
seth/add3 instructions to load their addresses), and assume subroutines may not be reachable with
the bl instruction (the compiler will generate the much slower seth/add3/jl instruction
sequence).

−msdata=none
Disable use of the small data area.Variables will be put into one of.data, bss, or .rodata (unless the
section attribute has been specified). This is the default.

The small data area consists of sections.sdataand .sbss. Objects may be explicitly put in the small
data area with thesection attribute using one of these sections.

−msdata=sdata
Put small global and static data in the small data area, but do not generate special code to reference
them.

−msdata=use
Put small global and static data in the small data area, and generate special instructions to reference
them.

gcc-4.0.3 2006-04-20 100

GCC(1) GNU GCC(1)

−G num
Put global and static objects less than or equal tonumbytes into the small data or bss sections instead
of the normal data or bss sections. The default value ofnumis 8. The−msdataoption must be set to
one ofsdataor usefor this option to have any effect.

All modules should be compiled with the same−G num value. Compilingwith different values of
nummay or may not work; if it doesn’t the linker will give an error message−−−incorrect code will
not be generated.

−mdebug
Makes the M32R specific code in the compiler display some statistics that might help in debugging
programs.

−malign−loops
Align all loops to a 32−byte boundary.

−mno−align−loops
Do not enforce a 32−byte alignment for loops. This is the default.

−missue−rate=number
Issuenumberinstructions per cycle.numbercan only be 1 or 2.

−mbranch−cost=number
numbercan only be 1 or 2.If it is 1 then branches will be preferred over conditional code, if it is 2,
then the opposite will apply.

−mflush−trap=number
Specifies the trap number to use to flush the cache. The default is 12.Valid numbers are between 0
and 15 inclusive.

−mno−flush−trap
Specifies that the cache cannot be flushed by using a trap.

−mflush−func=name
Specifies the name of the operating system function to call to flush the cache.The default is
_flush_cache, but a function call will only be used if a trap is not available.

−mno−flush−func
Indicates that there is noOS function for flushing the cache.

M680x0 Options

These are the−m options defined for the 68000 series. The default values for these options depends on
which style of 68000 was selected when the compiler was configured; the defaults for the most common
choices are given below.

−m68000
−mc68000

Generate output for a 68000. This is the default when the compiler is configured for 68000−based
systems.

Use this option for microcontrollers with a 68000 orEC000core, including the 68008, 68302, 68306,
68307, 68322, 68328 and 68356.

−m68020
−mc68020

Generate output for a 68020. This is the default when the compiler is configured for 68020−based
systems.

−m68881
Generate output containing 68881 instructions for floating point. This is the default for most 68020
systems unless−−nfp was specified when the compiler was configured.

gcc-4.0.3 2006-04-20 101

GCC(1) GNU GCC(1)

−m68030
Generate output for a 68030. This is the default when the compiler is configured for 68030−based
systems.

−m68040
Generate output for a 68040.This is the default when the compiler is configured for 68040−based
systems.

This option inhibits the use of 68881/68882 instructions that have to be emulated by software on the
68040. Usethis option if your 68040 does not have code to emulate those instructions.

−m68060
Generate output for a 68060.This is the default when the compiler is configured for 68060−based
systems.

This option inhibits the use of 68020 and 68881/68882 instructions that have to be emulated by soft-
ware on the 68060. Use this option if your 68060 does not have code to emulate those instructions.

−mcpu32
Generate output for aCPU32. This is the default when the compiler is configured for CPU32−based
systems.

Use this option for microcontrollers with aCPU32or CPU32+core, including the 68330, 68331, 68332,
68333, 68334, 68336, 68340, 68341, 68349 and 68360.

−m5200
Generate output for a 520X ‘‘coldfire’’ f amily cpu. This is the default when the compiler is configured
for 520X−based systems.

Use this option for microcontroller with a 5200 core, including theMCF5202, MCF5203, MCF5204and
MCF5202.

−m68020−40
Generate output for a 68040, without using any of the new instructions. Thisresults in code which can
run relatively efficiently on either a 68020/68881 or a 68030 or a 68040. The generated code does use
the 68881 instructions that are emulated on the 68040.

−m68020−60
Generate output for a 68060, without using any of the new instructions. Thisresults in code which can
run relatively efficiently on either a 68020/68881 or a 68030 or a 68040. The generated code does use
the 68881 instructions that are emulated on the 68060.

−msoft−float
Generate output containing library calls for floating point.Warning: the requisite libraries are not
available for all m68k targets. Normallythe facilities of the machine’s usual C compiler are used, but
this can’t be done directly in cross−compilation.You must make your own arrangements to provide
suitable library functions for cross−compilation.The embedded targets m68k−*−aout and
m68k−*−coff do provide software floating point support.

−mshort
Consider typeint to be 16 bits wide, like short int . Additionally, parameters passed on the
stack are also aligned to a 16−bit boundary even on targets whoseAPI mandates promotion to 32−bit.

−mnobitfield
Do not use the bit-field instructions.The −m68000, −mcpu32and−m5200options imply−mnobit-
field.

−mbitfield
Do use the bit-field instructions.The −m68020option implies−mbitfield . This is the default if you
use a configuration designed for a 68020.

gcc-4.0.3 2006-04-20 102

GCC(1) GNU GCC(1)

−mrtd
Use a different function-calling convention, in which functions that take a fixed number of arguments
return with thertd instruction, which pops their arguments while returning. This saves one instruc-
tion in the caller since there is no need to pop the arguments there.

This calling convention is incompatible with the one normally used on Unix, so you cannot use it if
you need to call libraries compiled with the Unix compiler.

Also, you must provide function prototypes for all functions that take variable numbers of arguments
(includingprintf); otherwise incorrect code will be generated for calls to those functions.

In addition, seriously incorrect code will result if you call a function with too many arguments. (Nor-
mally, extra arguments are harmlessly ignored.)

The rtd instruction is supported by the 68010, 68020, 68030, 68040, 68060 andCPU32processors,
but not by the 68000 or 5200.

−malign−int
−mno−align−int

Control whetherGCC aligns int , long , long long , float , double , and long double vari-
ables on a 32−bit boundary (−malign−int) or a 16−bit boundary (−mno−align−int). Aligning vari-
ables on 32−bit boundaries produces code that runs somewhat faster on processors with 32−bit busses
at the expense of more memory.

Warning: if you use the−malign−int switch, GCC will align structures containing the above types
differently than most published application binary interface specifications for the m68k.

−mpcrel
Use the pc-relative addressing mode of the 68000 directly, instead of using a global offset table.At
present, this option implies−fpic, allowing at most a 16−bit offset for pc-relative addressing.−fPIC is
not presently supported with−mpcrel, though this could be supported for 68020 and higher proces-
sors.

−mno−strict−align
−mstrict−align

Do not (do) assume that unaligned memory references will be handled by the system.

−msep−data
Generate code that allows the data segment to be located in a different area of memory from the text
segment. Thisallows for execute in place in an environment without virtual memory management.
This option implies−fPIC .

−mno−sep−data
Generate code that assumes that the data segment follows the text segment. Thisis the default.

−mid−shared−library
Generate code that supports shared libraries via the libraryID method. Thisallows for execute in
place and shared libraries in an environment without virtual memory management. This option
implies−fPIC .

−mno−id−shared−library
Generate code that doesn’t assumeID based shared libraries are being used. This is the default.

−mshared−library−id=n
Specified the identification number of theID based shared library being compiled.Specifying a value
of 0 will generate more compact code, specifying other values will force the allocation of that number
to the current library but is no more space or time efficient than omitting this option.

M68hc1x Options

These are the−m options defined for the 68hc11 and 68hc12 microcontrollers.The default values for these
options depends on which style of microcontroller was selected when the compiler was configured; the
defaults for the most common choices are given below.

gcc-4.0.3 2006-04-20 103

GCC(1) GNU GCC(1)

−m6811
−m68hc11

Generate output for a 68HC11. This is the default when the compiler is configured for 68HC11−based
systems.

−m6812
−m68hc12

Generate output for a 68HC12. This is the default when the compiler is configured for 68HC12−based
systems.

−m68S12
−m68hcs12

Generate output for a 68HCS12.

−mauto−incdec
Enable the use of 68HC12 pre and post auto-increment and auto-decrement addressing modes.

−minmax
−nominmax

Enable the use of 68HC12 min and max instructions.

−mlong−calls
−mno−long−calls

Treat all calls as being far away (near). Ifcalls are assumed to be far away, the compiler will use the
call instruction to call a function and thertc instruction for returning.

−mshort
Consider typeint to be 16 bits wide, likeshort int .

−msoft−reg−count=count
Specify the number of pseudo-soft registers which are used for the code generation. The maximum
number is 32. Using more pseudo-soft register may or may not result in better code depending on the
program. Thedefault is 4 for 68HC11 and 2 for 68HC12.

MCore Options

These are the−m options defined for the Motorola M*Core processors.

−mhardlit
−mno−hardlit

Inline constants into the code stream if it can be done in two instructions or less.

−mdiv
−mno−div

Use the divide instruction. (Enabled by default).

−mrelax−immediate
−mno−relax−immediate

Allow arbitrary sized immediates in bit operations.

−mwide−bitfields
−mno−wide−bitfields

Always treat bit-fields as int−sized.

−m4byte−functions
−mno−4byte−functions

Force all functions to be aligned to a four byte boundary.

−mcallgraph−data
−mno−callgraph−data

Emit callgraph information.

gcc-4.0.3 2006-04-20 104

GCC(1) GNU GCC(1)

−mslow−bytes
−mno−slow−bytes

Prefer word access when reading byte quantities.

−mlittle−endian
−mbig−endian

Generate code for a little endian target.

−m210
−m340

Generate code for the 210 processor.

MIPSOptions

−EB
Generate big-endian code.

−EL
Generate little-endian code. This is the default formips*el−*−* configurations.

−march=arch
Generate code that will run onarch, which can be the name of a genericMIPS ISA, or the name of a
particular processor. The ISA names are:mips1, mips2, mips3, mips4, mips32, mips32r2, and
mips64. The processor names are:4kc, 4kp, 5kc, 20kc, m4k, r2000, r3000, r3900, r4000, r4400,
r4600, r4650, r6000, r8000, rm7000, rm9000, orion, sb1, vr4100, vr4111, vr4120, vr4130, vr4300,
vr5000, vr5400 andvr5500. The special valuefrom-abi selects the most compatible architecture for
the selectedABI (that is,mips1 for 32−bit ABIs andmips3 for 64−bit ABIs).

In processor names, a final000 can be abbreviated ask (for example,−march=r2k). Prefixes are
optional, andvr may be writtenr .

GCC defines two macros based on the value of this option. The first is_MIPS_ARCH, which gives
the name of target architecture, as a string.The second has the form_MIPS_ARCH_foo, wherefoo is
the capitalized value of_MIPS_ARCH. For example,−march=r2000 will set _MIPS_ARCH to
‘‘ r2000’’ and define the macro_MIPS_ARCH_R2000.

Note that the_MIPS_ARCH macro uses the processor names given above. In other words, it will
have the full prefix and will not abbreviate 000 ask. In the case offrom-abi , the macro names the
resolved architecture (either‘‘ mips1’’ or ‘‘ mips3’’). It names the default architecture when no
−march option is given.

−mtune=arch
Optimize forarch. Among other things, this option controls the way instructions are scheduled, and
the perceived cost of arithmetic operations. The list ofarchvalues is the same as for−march.

When this option is not used,GCC will optimize for the processor specified by−march. By using
−march and−mtune together, it is possible to generate code that will run on a family of processors,
but optimize the code for one particular member of that family.

−mtune defines the macros_MIPS_TUNE and_MIPS_TUNE_foo, which work in the same way as
the−march ones described above.

−mips1
Equivalent to−march=mips1.

−mips2
Equivalent to−march=mips2.

−mips3
Equivalent to−march=mips3.

−mips4
Equivalent to−march=mips4.

gcc-4.0.3 2006-04-20 105

GCC(1) GNU GCC(1)

−mips32
Equivalent to−march=mips32.

−mips32r2
Equivalent to−march=mips32r2.

−mips64
Equivalent to−march=mips64.

−mips16
−mno−mips16

Use (do not use) theMIPS16 ISA.

−mabi=32
−mabi=o64
−mabi=n32
−mabi=64
−mabi=eabi

Generate code for the given ABI .

Note that theEABI has a 32−bit and a 64−bit variant. GCC normally generates 64−bit code when you
select a 64−bit architecture, but you can use−mgp32to get 32−bit code instead.

For information about the O64ABI , see <http://gcc.gnu.org/projects/mipso64−abi.html>.

−mabicalls
−mno−abicalls

Generate (do not generate) SVR4−style position-independent code.−mabicalls is the default for
SVR4−based systems.

−mxgot
−mno−xgot

Lift (do not lift) the usual restrictions on the size of the global offset table.

GCC normally uses a single instruction to load values from theGOT. While this is relatively efficient,
it will only work if the GOT is smaller than about 64k.Anything larger will cause the linker to report
an error such as:

relocation truncated to fit: R_MIPS_GOT16 foobar

If this happens, you should recompile your code with−mxgot. It should then work with very large
GOTs, although it will also be less efficient, since it will take three instructions to fetch the value of a
global symbol.

Note that some linkers can create multiple GOTs. If you have such a linker, you should only need to
use−mxgot when a single object file accesses more than 64k’s worth ofGOT entries. Very few do.

These options have no effect unlessGCC is generating position independent code.

−mgp32
Assume that general-purpose registers are 32 bits wide.

−mgp64
Assume that general-purpose registers are 64 bits wide.

−mfp32
Assume that floating-point registers are 32 bits wide.

−mfp64
Assume that floating-point registers are 64 bits wide.

−mhard−float
Use floating-point coprocessor instructions.

gcc-4.0.3 2006-04-20 106

GCC(1) GNU GCC(1)

−msoft−float
Do not use floating-point coprocessor instructions. Implement floating-point calculations using library
calls instead.

−msingle−float
Assume that the floating-point coprocessor only supports single-precision operations.

−mdouble−float
Assume that the floating-point coprocessor supports double-precision operations. This is the default.

−mpaired−single
−mno−paired−single

Use (do not use) paired-single floating-point instructions.
This option can only be used when generating 64−bit code and requires hardware floating-point sup-

port to be enabled.

−mips3d
−mno−mips3d

Use (do not use) theMIPS−3D ASE. The option−mips3d implies−mpaired−single.

−mint64
Force int and long types to be 64 bits wide.See−mlong32 for an explanation of the default and
the way that the pointer size is determined.

This option has been deprecated and will be removed in a future release.

−mlong64
Force long types to be 64 bits wide.See−mlong32 for an explanation of the default and the way
that the pointer size is determined.

−mlong32
Force long , int , and pointer types to be 32 bits wide.

The default size ofint s, long s and pointers depends on theABI . All the supported ABIs use 32−bit
int s. Then64ABI uses 64−bitlong s, as does the 64−bitEABI; the others use 32−bitlong s. Point-
ers are the same size aslong s, or the same size as integer registers, whichever is smaller.

−msym32
−mno−sym32

Assume (do not assume) that all symbols have 32−bit values, regardless of the selectedABI . This
option is useful in combination with−mabi=64and−mno−abicallsbecause it allows GCC to generate
shorter and faster references to symbolic addresses.

−G num
Put global and static items less than or equal tonumbytes into the small data or bss section instead of
the normal data or bss section. This allows the data to be accessed using a single instruction.

All modules should be compiled with the same−G numvalue.

−membedded−data
−mno−embedded−data

Allocate variables to the read-only data section first if possible, then next in the small data section if
possible, otherwise in data.This gives slightly slower code than the default, but reduces the amount of
RAM required when executing, and thus may be preferred for some embedded systems.

−muninit−const−in−rodata
−mno−uninit−const−in−rodata

Put uninitializedconst variables in the read-only data section. This option is only meaningful in
conjunction with−membedded−data.

−msplit−addresses

gcc-4.0.3 2006-04-20 107

GCC(1) GNU GCC(1)

−mno−split−addresses
Enable (disable) use of the%hi() and%lo() assembler relocation operators. This option has been
superseded by−mexplicit−relocsbut is retained for backwards compatibility.

−mexplicit−relocs
−mno−explicit−relocs

Use (do not use) assembler relocation operators when dealing with symbolic addresses. The alterna-
tive, selected by−mno−explicit−relocs, is to use assembler macros instead.

−mexplicit−relocs is the default ifGCC was configured to use an assembler that supports relocation
operators.

−mcheck−zero−division
−mno−check−zero−division

Trap (do not trap) on integer division by zero. The default is−mcheck−zero−division.

−mdivide−traps
−mdivide−breaks

MIPS systems check for division by zero by generating either a conditional trap or a break instruction.
Using traps results in smaller code, but is only supported onMIPS II and later. Also, some versions of
the Linux kernel have a bug that prevents trap from generating the proper signal (SIGFPE). Use
−mdivide−traps to allow conditional traps on architectures that support them and−mdivide−breaks
to force the use of breaks.

The default is usually−mdivide−traps, but this can be overridden at configure time using
−−with−divide=breaks. Divide-by-zero checks can be completely disabled using
−mno−check−zero−division.

−mmemcpy
−mno−memcpy

Force (do not force) the use ofmemcpy() for non-trivial block moves. Thedefault is−mno−mem-
cpy, which allowsGCC to inline most constant-sized copies.

−mlong−calls
−mno−long−calls

Disable (do not disable) use of thejal instruction. Callingfunctions usingjal is more efficient but
requires the caller and callee to be in the same 256 megabyte segment.

This option has no effect on abicalls code. The default is−mno−long−calls.

−mmad
−mno−mad

Enable (disable) use of themad, madu andmul instructions, as provided by the R4650ISA.

−mfused−madd
−mno−fused−madd

Enable (disable) use of the floating point multiply-accumulate instructions, when they are available.
The default is−mfused−madd.

When multiply-accumulate instructions are used, the intermediate product is calculated to infinite pre-
cision and is not subject to theFCSR Flush to Zero bit. This may be undesirable in some circum-
stances.

−nocpp
Tell the MIPS assembler to not run its preprocessor over user assembler files (with a.s suffix) when
assembling them.

−mfix−r4000
−mno−fix−r4000

Work around certain R4000CPUerrata:

gcc-4.0.3 2006-04-20 108

GCC(1) GNU GCC(1)

− A double-word or a variable shift may give an incorrect result if executed immediately after start-
ing an integer division.

− A double-word or a variable shift may give an incorrect result if executed while an integer multi-
plication is in progress.

− An integer division may give an incorrect result if started in a delay slot of a taken branch or a
jump.

−mfix−r4400
−mno−fix−r4400

Work around certain R4400CPUerrata:

− A double-word or a variable shift may give an incorrect result if executed immediately after start-
ing an integer division.

−mfix−vr4120
−mno−fix−vr4120

Work around certainVR4120errata:

− dmultu does not always produce the correct result.

− div andddiv do not always produce the correct result if one of the operands is negative.

The workarounds for the division errata rely on special functions inlibgcc.a. At present, these func-
tions are only provided by themips64vr*−elf configurations.

OtherVR4120errata require a nop to be inserted between certain pairs of instructions.These errata are
handled by the assembler, not byGCC itself.

−mfix−vr4130
Work around theVR4130 mflo /mfhi errata. Theworkarounds are implemented by the assembler
rather than byGCC, althoughGCC will avoid usingmflo andmfhi if the VR4130macc, macchi ,
dmacc anddmacchi instructions are available instead.

−mfix−sb1
−mno−fix−sb1

Work around certainSB−1 CPUcore errata. (This flag currently works around theSB−1 revision 2
‘‘ F1’’ and ‘‘F2’’ fl oating point errata.)

−mflush−func=func
−mno−flush−func

Specifies the function to call to flush the I and D caches, or to not call any such function. If called, the
function must take the same arguments as the common_flush_func() , that is, the address of the
memory range for which the cache is being flushed, the size of the memory range, and the number 3
(to flush both caches). The default depends on the target GCC was configured for, but commonly is
either_flush_funcor _ _cpu_flush.

−mbranch−likely
−mno−branch−likely

Enable or disable use of Branch Likely instructions, regardless of the default for the selected architec-
ture. Bydefault, Branch Likely instructions may be generated if they are supported by the selected
architecture. Anexception is for theMIPS32 andMIPS64 architectures and processors which imple-
ment those architectures; for those, Branch Likely instructions will not be generated by default
because theMIPS32andMIPS64architectures specifically deprecate their use.

−mfp−exceptions
−mno−fp−exceptions

Specifies whetherFP exceptions are enabled. This affects how we scheduleFP instructions for some
processors. Thedefault is thatFPexceptions are enabled.

For instance, on theSB−1, if FPexceptions are disabled, and we are emitting 64−bit code, then we can
use bothFPpipes. Otherwise,we can only use oneFPpipe.

gcc-4.0.3 2006-04-20 109

GCC(1) GNU GCC(1)

−mvr4130−align
−mno−vr4130−align

The VR4130 pipeline is two-way superscalar, but can only issue two instructions together if the first
one is 8−byte aligned. When this option is enabled,GCC will align pairs of instructions that it thinks
should execute in parallel.

This option only has an effect when optimizing for theVR4130. It normally makes code faster, but at
the expense of making it bigger. It is enabled by default at optimization level −O3.

MMIX Options

These options are defined for theMMIX:

−mlibfuncs
−mno−libfuncs

Specify that intrinsic library functions are being compiled, passing all values in registers, no matter the
size.

−mepsilon
−mno−epsilon

Generate floating-point comparison instructions that compare with respect to therE epsilon register.

−mabi=mmixware
−mabi=gnu

Generate code that passes function parameters and return values that (in the called function) are seen
as registers$0 and up, as opposed to theGNU ABI which uses global registers$231 and up.

−mzero−extend
−mno−zero−extend

When reading data from memory in sizes shorter than 64 bits, use (do not use) zero-extending load
instructions by default, rather than sign-extending ones.

−mknuthdiv
−mno−knuthdiv

Make the result of a division yielding a remainder have the same sign as the divisor. With the default,
−mno−knuthdiv, the sign of the remainder follows the sign of the dividend. Bothmethods are arith-
metically valid, the latter being almost exclusively used.

−mtoplevel−symbols
−mno−toplevel−symbols

Prepend (do not prepend) a: to all global symbols, so the assembly code can be used with thePRE-
FIX assembly directive.

−melf
Generate an executable in theELF format, rather than the default mmo format used by themmix sim-
ulator.

−mbranch−predict
−mno−branch−predict

Use (do not use) the probable-branch instructions, when static branch prediction indicates a probable
branch.

−mbase−addresses
−mno−base−addresses

Generate (do not generate) code that usesbase addresses. Using a base address automatically gener-
ates a request (handled by the assembler and the linker) for a constant to be set up in a global register.
The register is used for one or more base address requests within the range 0 to 255 from the value
held in the register. The generally leads to short and fast code, but the number of different data items
that can be addressed is limited. This means that a program that uses lots of static data may require
−mno−base−addresses.

gcc-4.0.3 2006-04-20 110

GCC(1) GNU GCC(1)

−msingle−exit
−mno−single−exit

Force (do not force) generated code to have a single exit point in each function.

MN10300Options

These−m options are defined for MatsushitaMN10300architectures:

−mmult−bug
Generate code to avoid bugs in the multiply instructions for theMN10300 processors. Thisis the
default.

−mno−mult−bug
Do not generate code to avoid bugs in the multiply instructions for theMN10300processors.

−mam33
Generate code which uses features specific to theAM33 processor.

−mno−am33
Do not generate code which uses features specific to theAM33 processor. This is the default.

−mno−crt0
Do not link in the C run-time initialization object file.

−mrelax
Indicate to the linker that it should perform a relaxation optimization pass to shorten branches, calls
and absolute memory addresses.This option only has an effect when used on the command line for
the final link step.

This option makes symbolic debugging impossible.

NS32KOptions

These are the−m options defined for the 32000 series. The default values for these options depends on
which style of 32000 was selected when the compiler was configured; the defaults for the most common
choices are given below.

−m32032
−m32032

Generate output for a 32032. This is the default when the compiler is configured for 32032 and 32016
based systems.

−m32332
−m32332

Generate output for a 32332.This is the default when the compiler is configured for 32332−based
systems.

−m32532
−m32532

Generate output for a 32532. This is the default when the compiler is configured for 32532−based
systems.

−m32081
Generate output containing 32081 instructions for floating point. This is the default for all systems.

−m32381
Generate output containing 32381 instructions for floating point.This also implies−m32081. The
32381 is only compatible with the 32332 and 32532 cpus.This is the default for the pc532−netbsd
configuration.

−mmulti−add
Try and generate multiply-add floating point instructionspolyF anddotF . This option is only avail-
able if the−m32381option is in effect. Usingthese instructions requires changes to register allocation
which generally has a negative impact on performance. This option should only be enabled when
compiling code particularly likely to make heavy use of multiply-add instructions.

gcc-4.0.3 2006-04-20 111

GCC(1) GNU GCC(1)

−mnomulti−add
Do not try and generate multiply-add floating point instructionspolyF anddotF . This is the default
on all platforms.

−msoft−float
Generate output containing library calls for floating point.Warning: the requisite libraries may not be
available.

−mieee−compare
−mno−ieee−compare

Control whether or not the compiler usesIEEE floating point comparisons. These handle correctly the
case where the result of a comparison is unordered.Warning: the requisite kernel support may not be
available.

−mnobitfield
Do not use the bit-field instructions. On some machines it is faster to use shifting and masking opera-
tions. Thisis the default for the pc532.

−mbitfield
Do use the bit-field instructions. This is the default for all platforms except the pc532.

−mrtd
Use a different function-calling convention, in which functions that take a fixed number of arguments
return pop their arguments on return with theret instruction.

This calling convention is incompatible with the one normally used on Unix, so you cannot use it if
you need to call libraries compiled with the Unix compiler.

Also, you must provide function prototypes for all functions that take variable numbers of arguments
(includingprintf); otherwise incorrect code will be generated for calls to those functions.

In addition, seriously incorrect code will result if you call a function with too many arguments. (Nor-
mally, extra arguments are harmlessly ignored.)

This option takes its name from the 680x0rtd instruction.

−mregparam
Use a different function-calling convention where the first two arguments are passed in registers.

This calling convention is incompatible with the one normally used on Unix, so you cannot use it if
you need to call libraries compiled with the Unix compiler.

−mnoregparam
Do not pass any arguments in registers. Thisis the default for all targets.

−msb
It is OK to use the sb as an index register which is always loaded with zero. This is the default for the
pc532−netbsd target.

−mnosb
The sb register is not available for use or has not been initialized to zero by the run time system.This
is the default for all targets except the pc532−netbsd. It is also implied whenever −mhimem or −fpic
is set.

−mhimem
Many ns32000 series addressing modes use displacements of up to 512MB. If an address is above
512MB then displacements from zero can not be used.This option causes code to be generated which
can be loaded above 512MB. Thismay be useful for operating systems orROM code.

−mnohimem
Assume code will be loaded in the first 512MB of virtual address space.This is the default for all
platforms.

PDP−11Options

gcc-4.0.3 2006-04-20 112

GCC(1) GNU GCC(1)

These options are defined for thePDP−11:

−mfpu
Use hardwareFPPfloating point. This is the default. (FIS floating point on thePDP−11/40is not sup-
ported.)

−msoft−float
Do not use hardware floating point.

−mac0
Return floating-point results in ac0 (fr0 in Unix assembler syntax).

−mno−ac0
Return floating-point results in memory. This is the default.

−m40
Generate code for aPDP−11/40.

−m45
Generate code for aPDP−11/45. This is the default.

−m10
Generate code for aPDP−11/10.

−mbcopy−builtin
Use inlinemovmemhi patterns for copying memory. This is the default.

−mbcopy
Do not use inlinemovmemhi patterns for copying memory.

−mint16
−mno−int32

Use 16−bitint . This is the default.

−mint32
−mno−int16

Use 32−bitint .

−mfloat64
−mno−float32

Use 64−bitfloat . This is the default.

−mfloat32
−mno−float64

Use 32−bitfloat .

−mabshi
Useabshi2 pattern. Thisis the default.

−mno−abshi
Do not useabshi2 pattern.

−mbranch−expensive
Pretend that branches are expensive. This is for experimenting with code generation only.

−mbranch−cheap
Do not pretend that branches are expensive. This is the default.

−msplit
Generate code for a system with split I&D.

−mno−split
Generate code for a system without split I&D. This is the default.

gcc-4.0.3 2006-04-20 113

GCC(1) GNU GCC(1)

−munix−asm
Use Unix assembler syntax. This is the default when configured forpdp11−*−bsd.

−mdec−asm
Use DEC assembler syntax. This is the default when configured for any PDP−11 target other than
pdp11−*−bsd.

PowerPC Options

These are listed under

IBM RS/6000and PowerPC Options

These−m options are defined for theIBM RS/6000and PowerPC:

−mpower
−mno−power
−mpower2
−mno−power2
−mpowerpc
−mno−powerpc
−mpowerpc−gpopt
−mno−powerpc−gpopt
−mpowerpc−gfxopt
−mno−powerpc−gfxopt
−mpowerpc64
−mno−powerpc64

GCC supports two related instruction set architectures for theRS/6000and PowerPC. ThePOWER
instruction set are those instructions supported by therios chip set used in the originalRS/6000sys-
tems and thePowerPCinstruction set is the architecture of the Motorola MPC5xx, MPC6xx, MPC8xx
microprocessors, and theIBM 4xx microprocessors.

Neither architecture is a subset of the other. Howev er there is a large common subset of instructions
supported by both. AnMQ register is included in processors supporting thePOWERarchitecture.

You use these options to specify which instructions are available on the processor you are using.The
default value of these options is determined when configuringGCC. Specifying the−mcpu=cpu_type
overrides the specification of these options.We recommend you use the−mcpu=cpu_typeoption
rather than the options listed above.

The−mpower option allows GCC to generate instructions that are found only in thePOWERarchitec-
ture and to use theMQ register. Specifying−mpower2 implies−power and also allows GCC to gener-
ate instructions that are present in thePOWER2architecture but not the originalPOWERarchitecture.

The −mpowerpc option allows GCC to generate instructions that are found only in the 32−bit subset
of the PowerPC architecture.Specifying−mpowerpc−gpopt implies −mpowerpc and also allows
GCC to use the optional PowerPC architecture instructions in the General Purpose group, including
floating-point square root.Specifying−mpowerpc−gfxopt implies−mpowerpc and also allows GCC
to use the optional PowerPC architecture instructions in the Graphics group, including floating-point
select.

The−mpowerpc64option allows GCC to generate the additional 64−bit instructions that are found in
the full PowerPC64 architecture and to treat GPRs as 64−bit, doubleword quantities.GCC defaults to
−mno−powerpc64.

If you specify both−mno−powerand−mno−powerpc, GCCwill use only the instructions in the com-
mon subset of both architectures plus some specialAIX common-mode calls, and will not use theMQ
register. Specifying both−mpower and−mpowerpc permitsGCC to use any instruction from either
architecture and to allow use of theMQ register; specify this for the MotorolaMPC601.

gcc-4.0.3 2006-04-20 114

GCC(1) GNU GCC(1)

−mnew−mnemonics
−mold−mnemonics

Select which mnemonics to use in the generated assembler code.With −mnew−mnemonics, GCC
uses the assembler mnemonics defined for the PowerPC architecture.With −mold−mnemonics it
uses the assembler mnemonics defined for thePOWERarchitecture. Instructionsdefined in only one
architecture have only one mnemonic;GCCuses that mnemonic irrespective of which of these options
is specified.

GCC defaults to the mnemonics appropriate for the architecture in use.Specifying−mcpu=cpu_type
sometimes overrides the value of these option. Unless you are building a cross−compiler, you should
normally not specify either−mnew−mnemonicsor −mold−mnemonics, but should instead accept the
default.

−mcpu=cpu_type
Set architecture type, register usage, choice of mnemonics, and instruction scheduling parameters for
machine typecpu_type. Supported values forcpu_typeare 401, 403, 405, 405fp, 440, 440fp, 505,
601, 602, 603, 603e, 604, 604e, 620, 630, 740, 7400, 7450, 750, 801, 821, 823, 860, 970, 8540, com-
mon, ec603e, G3, G4, G5, power, power2, power3, power4, power5, powerpc, powerpc64, rios,
rios1, rios2, rsc, and rs64a.

−mcpu=commonselects a completely generic processor. Code generated under this option will run
on any POWERor PowerPC processor. GCC will use only the instructions in the common subset of
both architectures, and will not use theMQ register. GCC assumes a generic processor model for
scheduling purposes.

−mcpu=power, −mcpu=power2, −mcpu=powerpc, and −mcpu=powerpc64 specify generic
POWER, POWER2, pure 32−bit PowerPC (i.e., notMPC601), and 64−bit PowerPC architecture machine
types, with an appropriate, generic processor model assumed for scheduling purposes.

The other options specify a specific processor. Code generated under those options will run best on
that processor, and may not run at all on others.

The−mcpu options automatically enable or disable the following options:−maltivec, −mhard−float,
−mmfcrf , −mmultiple , −mnew−mnemonics, −mpower, −mpower2, −mpowerpc64, −mpow-
erpc−gpopt, −mpowerpc−gfxopt, −mstring. The particular options set for any particularCPU will
vary between compiler versions, depending on what setting seems to produce optimal code for that
CPU; it doesn’t necessarily reflect the actual hardware’s capabilities. Ifyou wish to set an individual
option to a particular value, you may specify it after the−mcpu option, like −mcpu=970
−mno−altivec.

On AIX , the−maltivec and−mpowerpc64options are not enabled or disabled by the−mcpu option at
present, sinceAIX does not have full support for these options.You may still enable or disable them
individually if you’re sure it’ll work in your environment.

−mtune=cpu_type
Set the instruction scheduling parameters for machine typecpu_type, but do not set the architecture
type, register usage, or choice of mnemonics, as−mcpu=cpu_typewould. The same values for
cpu_typeare used for−mtune as for−mcpu. If both are specified, the code generated will use the
architecture, registers, and mnemonics set by−mcpu, but the scheduling parameters set by−mtune.

−maltivec
−mno−altivec

Generate code that uses (does not use) AltiVec instructions, and also enable the use of built-in func-
tions that allow more direct access to the AltiVec instruction set.You may also need to set
−mabi=altivec to adjust the currentABI with AltiVec ABI enhancements.

−mabi=spe
Extend the currentABI with SPE ABIextensions. Thisdoes not change the default ABI , instead it adds
theSPE ABIextensions to the currentABI .

gcc-4.0.3 2006-04-20 115

GCC(1) GNU GCC(1)

−mabi=no−spe
Disable BookeSPE ABIextensions for the currentABI .

−misel=yes/no
−misel

This switch enables or disables the generation ofISEL instructions.

−mspe=yes/no
−mspe

This switch enables or disables the generation ofSPEsimd instructions.

−mfloat−gprs=yes/single/double/no
−mfloat−gprs

This switch enables or disables the generation of floating point operations on the general purpose reg-
isters for architectures that support it.

The argumentyesor singleenables the use of single-precision floating point operations.

The argumentdoubleenables the use of single and double-precision floating point operations.

The argumentnodisables floating point operations on the general purpose registers.

This option is currently only available on the MPC854x.

−m32
−m64

Generate code for 32−bit or 64−bit environments of Darwin andSVR4 targets (including GNU/Linux).
The 32−bit environment sets int, long and pointer to 32 bits and generates code that runs on any Pow-
erPC variant. The64−bit environment sets int to 32 bits and long and pointer to 64 bits, and generates
code for PowerPC64, as for−mpowerpc64.

−mfull−toc
−mno−fp−in−toc
−mno−sum−in−toc
−mminimal−toc

Modify generation of theTOC (Table Of Contents), which is created for every executable file. The
−mfull−toc option is selected by default. In that case,GCC will allocate at least oneTOC entry for
each unique non-automatic variable reference in your program.GCC will also place floating-point
constants in theTOC. Howev er, only 16,384 entries are available in theTOC.

If you receive a linker error message that saying you have overflowed the available TOC space, you can
reduce the amount ofTOC space used with the−mno−fp−in−toc and −mno−sum−in−toc options.
−mno−fp−in−toc prevents GCC from putting floating-point constants in theTOC and
−mno−sum−in−tocforcesGCC to generate code to calculate the sum of an address and a constant at
run-time instead of putting that sum into theTOC. You may specify one or both of these options.
Each causesGCC to produce very slightly slower and larger code at the expense of conservingTOC
space.

If you still run out of space in theTOC ev en when you specify both of these options, specify−mmini-
mal−toc instead. Thisoption causesGCC to make only oneTOC entry for every file. When you spec-
ify this option,GCC will produce code that is slower and larger but which uses extremely littleTOC
space. You may wish to use this option only on files that contain less frequently executed code.

−maix64
−maix32

Enable 64−bitAIX ABI and calling convention: 64−bit pointers, 64−bitlong type, and the infrastruc-
ture needed to support them.Specifying−maix64 implies −mpowerpc64 and −mpowerpc, while
−maix32disables the 64−bitABI and implies−mno−powerpc64. GCCdefaults to−maix32.

−mxl−compat

gcc-4.0.3 2006-04-20 116

GCC(1) GNU GCC(1)

−mno−xl−compat
Produce code that conforms more closely toIBM XLC semantics when using AIX-compatibleABI .
Pass floating-point arguments to prototyped functions beyond the register save area (RSA) on the stack
in addition to argument FPRs.Do not assume that most significant double in 128 bit long double
value is properly rounded when comparing values.

The AIX calling convention was extended but not initially documented to handle an obscure K&R C
case of calling a function that takes the address of its arguments with fewer arguments than declared.
AIX XL compilers access floating point arguments which do not fit in theRSA from the stack when a
subroutine is compiled without optimization. Because always storing floating-point arguments on the
stack is inefficient and rarely needed, this option is not enabled by default and only is necessary when
calling subroutines compiled byAIX XL compilers without optimization.

−mpe
SupportIBM RS/6000 SPParallel Environment(PE). Link an application written to use message pass-
ing with special startup code to enable the application to run. The system must have PE installed in the
standard location (/usr/lpp/ppe.poe/), or thespecsfile must be overridden with the−specs=option to
specify the appropriate directory location. The Parallel Environment does not support threads, so the
−mpeoption and the−pthread option are incompatible.

−malign−natural
−malign−power

On AIX , 32−bit Darwin, and 64−bit PowerPC GNU/Linux, the option−malign−natural overrides the
ABI-defined alignment of larger types, such as floating-point doubles, on their natural size-based
boundary. The option−malign−power instructsGCC to follow the ABI-specified alignment rules.
GCCdefaults to the standard alignment defined in theABI .

On 64−bit Darwin, natural alignment is the default, and−malign−power is not supported.

−msoft−float
−mhard−float

Generate code that does not use (uses) the floating-point register set.Software floating point emula-
tion is provided if you use the−msoft−float option, and pass the option toGCCwhen linking.

−mmultiple
−mno−multiple

Generate code that uses (does not use) the load multiple word instructions and the store multiple word
instructions. Theseinstructions are generated by default onPOWERsystems, and not generated on
PowerPC systems. Do not use−mmultiple on little endian PowerPC systems, since those instructions
do not work when the processor is in little endian mode.The exceptions arePPC740and PPC750
which permit the instructions usage in little endian mode.

−mstring
−mno−string

Generate code that uses (does not use) the load string instructions and the store string word instruc-
tions to save multiple registers and do small block moves. Theseinstructions are generated by default
on POWERsystems, and not generated on PowerPC systems. Do not use−mstring on little endian
PowerPC systems, since those instructions do not work when the processor is in little endian mode.
The exceptions arePPC740andPPC750which permit the instructions usage in little endian mode.

−mupdate
−mno−update

Generate code that uses (does not use) the load or store instructions that update the base register to the
address of the calculated memory location.These instructions are generated by default. If you use
−mno−update, there is a small window between the time that the stack pointer is updated and the
address of the previous frame is stored, which means code that walks the stack frame across interrupts
or signals may get corrupted data.

gcc-4.0.3 2006-04-20 117

GCC(1) GNU GCC(1)

−mfused−madd
−mno−fused−madd

Generate code that uses (does not use) the floating point multiply and accumulate instructions.These
instructions are generated by default if hardware floating is used.

−mno−bit−align
−mbit−align

On System V.4 and embedded PowerPC systems do not (do) force structures and unions that contain
bit-fields to be aligned to the base type of the bit−field.

For example, by default a structure containing nothing but 8unsigned bit-fields of length 1 would
be aligned to a 4 byte boundary and have a size of 4 bytes. By using−mno−bit−align, the structure
would be aligned to a 1 byte boundary and be one byte in size.

−mno−strict−align
−mstrict−align

On System V.4 and embedded PowerPC systems do not (do) assume that unaligned memory refer-
ences will be handled by the system.

−mrelocatable
−mno−relocatable

On embedded PowerPC systems generate code that allows (does not allow) the program to be relo-
cated to a different address at runtime. If you use−mrelocatable on any module, all objects linked
together must be compiled with−mrelocatableor −mrelocatable−lib.

−mrelocatable−lib
−mno−relocatable−lib

On embedded PowerPC systems generate code that allows (does not allow) the program to be relo-
cated to a different address at runtime. Modules compiled with−mrelocatable−lib can be linked with
either modules compiled without−mrelocatable and −mrelocatable−lib or with modules compiled
with the−mrelocatableoptions.

−mno−toc
−mtoc

On System V.4 and embedded PowerPC systems do not (do) assume that register 2 contains a pointer
to a global area pointing to the addresses used in the program.

−mlittle
−mlittle−endian

On System V.4 and embedded PowerPC systems compile code for the processor in little endian mode.
The−mlittle−endian option is the same as−mlittle .

−mbig
−mbig−endian

On System V.4 and embedded PowerPC systems compile code for the processor in big endian mode.
The−mbig−endianoption is the same as−mbig.

−mdynamic−no−pic
On Darwin and MacOS X systems, compile code so that it is not relocatable, but that its external ref-
erences are relocatable. The resulting code is suitable for applications, but not shared libraries.

−mprioritize−restricted−insns=priority
This option controls the priority that is assigned to dispatch-slot restricted instructions during the sec-
ond scheduling pass. The argumentpriority takes the value0/1/2 to assignno/highest/second−highest
priority to dispatch slot restricted instructions.

−msched−costly−dep=dependence_type
This option controls which dependences are considered costly by the target during instruction schedul-
ing. Theargumentdependence_typetakes one of the following values:no: no dependence is costly,
all: all dependences are costly, true_store_to_load: a true dependence from store to load is costly,
store_to_load: any dependence from store to load is costly, number: any dependence which latency >=

gcc-4.0.3 2006-04-20 118

GCC(1) GNU GCC(1)

numberis costly.

−minsert−sched−nops=scheme
This option controls which nop insertion scheme will be used during the second scheduling pass.The
argumentschemetakes one of the following values:no: Don’t insert nops.pad: Pad with nops any
dispatch group which has vacant issue slots, according to the scheduler’s grouping. regroup_exact:
Insert nops to force costly dependent insns into separate groups. Insert exactly as many nops as
needed to force an insn to a new group, according to the estimated processor grouping.number: Insert
nops to force costly dependent insns into separate groups.Insertnumbernops to force an insn to a
new group.

−mcall−sysv
On System V.4 and embedded PowerPC systems compile code using calling conventions that adheres
to the March 1995 draft of the System V Application Binary Interface, PowerPC processor supple-
ment. Thisis the default unless you configuredGCCusingpowerpc−*−eabiaix.

−mcall−sysv−eabi
Specify both−mcall−sysvand−meabioptions.

−mcall−sysv−noeabi
Specify both−mcall−sysvand−mno−eabioptions.

−mcall−solaris
On System V.4 and embedded PowerPC systems compile code for the Solaris operating system.

−mcall−linux
On System V.4 and embedded PowerPC systems compile code for the Linux-basedGNU system.

−mcall−gnu
On System V.4 and embedded PowerPC systems compile code for the Hurd-basedGNU system.

−mcall−netbsd
On System V.4 and embedded PowerPC systems compile code for the NetBSD operating system.

−maix−struct−return
Return all structures in memory (as specified by theAIX ABI).

−msvr4−struct−return
Return structures smaller than 8 bytes in registers (as specified by theSVR4 ABI).

−mabi=altivec
Extend the currentABI with AltiVecABI extensions. Thisdoes not change the default ABI , instead it
adds the AltiVecABI extensions to the currentABI .

−mabi=no−altivec
Disable AltiVecABI extensions for the currentABI .

−mprototype
−mno−prototype

On System V.4 and embedded PowerPC systems assume that all calls to variable argument functions
are properly prototyped. Otherwise, the compiler must insert an instruction before every non proto-
typed call to set or clear bit 6 of the condition code register (CR) to indicate whether floating point val-
ues were passed in the floating point registers in case the function takes a variable arguments. With
−mprototype, only calls to prototyped variable argument functions will set or clear the bit.

−msim
On embedded PowerPC systems, assume that the startup module is calledsim−crt0.o and that the
standard C libraries arelibsim.a and libc.a. This is the default for powerpc−*−eabisim. configura-
tions.

−mmvme
On embedded PowerPC systems, assume that the startup module is calledcrt0.o and the standard C
libraries arelibmvme.aandlibc.a.

gcc-4.0.3 2006-04-20 119

GCC(1) GNU GCC(1)

−mads
On embedded PowerPC systems, assume that the startup module is calledcrt0.o and the standard C
libraries arelibads.aandlibc.a.

−myellowknife
On embedded PowerPC systems, assume that the startup module is calledcrt0.o and the standard C
libraries arelibyk.aandlibc.a.

−mvxworks
On System V.4 and embedded PowerPC systems, specify that you are compiling for a VxWorks sys-
tem.

−mwindiss
Specify that you are compiling for the WindISS simulation environment.

−memb
On embedded PowerPC systems, set thePPC_EMBbit in the ELF flags header to indicate thateabi
extended relocations are used.

−meabi
−mno−eabi

On System V.4 and embedded PowerPC systems do (do not) adhere to the Embedded Applications
Binary Interface (eabi) which is a set of modifications to the System V.4 specifications.Selecting
−meabi means that the stack is aligned to an 8 byte boundary, a function_ _eabi is called to from
main to set up the eabi environment, and the−msdata option can use bothr2 and r13 to point to
two separate small data areas.Selecting−mno−eabi means that the stack is aligned to a 16 byte
boundary, do not call an initialization function frommain , and the−msdataoption will only user13
to point to a single small data area.The−meabi option is on by default if you configuredGCC using
one of thepowerpc*−*−eabi* options.

−msdata=eabi
On System V.4 and embedded PowerPC systems, put small initializedconst global and static data in
the .sdata2section, which is pointed to by registerr2 . Put small initialized non−const global and
static data in the.sdata section, which is pointed to by register r13 . Put small uninitialized global
and static data in the.sbsssection, which is adjacent to the.sdatasection. The−msdata=eabioption
is incompatible with the−mrelocatable option. The−msdata=eabi option also sets the−memb
option.

−msdata=sysv
On System V.4 and embedded PowerPC systems, put small global and static data in the.sdatasection,
which is pointed to by registerr13 . Put small uninitialized global and static data in the.sbsssection,
which is adjacent to the.sdatasection. The−msdata=sysvoption is incompatible with the−mrelo-
catableoption.

−msdata=default
−msdata

On System V.4 and embedded PowerPC systems, if−meabi is used, compile code the same as
−msdata=eabi, otherwise compile code the same as−msdata=sysv.

−msdata−data
On System V.4 and embedded PowerPC systems, put small global and static data in the.sdatasection.
Put small uninitialized global and static data in the.sbsssection. Donot use registerr13 to address
small data however. This is the default behavior unless other−msdataoptions are used.

−msdata=none
−mno−sdata

On embedded PowerPC systems, put all initialized global and static data in the.data section, and all
uninitialized data in the.bsssection.

gcc-4.0.3 2006-04-20 120

GCC(1) GNU GCC(1)

−G num
On embedded PowerPC systems, put global and static items less than or equal tonumbytes into the
small data or bss sections instead of the normal data or bss section.By default,numis 8. The−G num
switch is also passed to the linker. All modules should be compiled with the same−G numvalue.

−mregnames
−mno−regnames

On System V.4 and embedded PowerPC systems do (do not) emit register names in the assembly lan-
guage output using symbolic forms.

−mlongcall
−mno−longcall

Default to making all function calls indirectly, using a register, so that functions which reside further
than 32 megabytes (33,554,432 bytes) from the current location can be called. This setting can be
overridden by theshortcall function attribute, or by#pragma longcall(0) .

Some linkers are capable of detecting out-of-range calls and generating glue code on the fly. On these
systems, long calls are unnecessary and generate slower code. As of this writing, theAIX linker can
do this, as can theGNU linker for PowerPC/64. Itis planned to add this feature to theGNU linker for
32−bit PowerPC systems as well.

On Darwin/PPC systems,#pragma longcall will generate ‘‘jbsr callee, L42’’, plus a ‘‘branch
island’’ (glue code). The two target addresses represent the callee and the ‘‘branch island’’. The Dar-
win/PPC linker will prefer the first address and generate a ‘‘bl callee’’ if t hePPC‘‘ bl’’ i nstruction will
reach the callee directly; otherwise, the linker will generate ‘‘bl L42’’ to call the ‘‘branch island’’. The
‘‘ branch island’’ is appended to the body of the calling function; it computes the full 32−bit address of
the callee and jumps to it.

On Mach-O (Darwin) systems, this option directs the compiler emit to the glue for every direct call,
and the Darwin linker decides whether to use or discard it.

In the future, we may causeGCC to ignore all longcall specifications when the linker is known to gen-
erate glue.

−pthread
Adds support for multithreading with thepthreadslibrary. This option sets flags for both the prepro-
cessor and linker.

S/390 and zSeries Options

These are the−m options defined for the S/390 and zSeries architecture.

−mhard−float
−msoft−float

Use (do not use) the hardware floating-point instructions and registers for floating-point operations.
When −msoft−float is specified, functions inlibgcc.a will be used to perform floating-point opera-
tions. When−mhard−float is specified, the compiler generatesIEEE floating-point instructions.This
is the default.

−mbackchain
−mno−backchain

Store (do not store) the address of the caller’s frame as backchain pointer into the callee’s stack frame.
A backchain may be needed to allow debugging using tools that do not understandDWARF−2 call
frame information.When−mno−packed−stackis in effect, the backchain pointer is stored at the bot-
tom of the stack frame; when−mpacked−stackis in effect, the backchain is placed into the topmost
word of the 96/160 byte register save area.

In general, code compiled with−mbackchain is call-compatible with code compiled with
−mmo−backchain; howev er, use of the backchain for debugging purposes usually requires that the
whole binary is built with −mbackchain. Note that the combination of−mbackchain,
−mpacked−stack and −mhard−float is not supported. In order to build a linux kernel use

gcc-4.0.3 2006-04-20 121

GCC(1) GNU GCC(1)

−msoft−float.

The default is to not maintain the backchain.

−mpacked−stack
−mno−packed−stack

Use (do not use) the packed stack layout.When−mno−packed−stackis specified, the compiler uses
the all fields of the 96/160 byte register save area only for their default purpose; unused fields still take
up stack space.When−mpacked−stackis specified, register save slots are densely packed at the top
of the register save area; unused space is reused for other purposes, allowing for more efficient use of
the available stack space.However, when−mbackchain is also in effect, the topmost word of the save
area is always used to store the backchain, and the return address register is always saved two words
below the backchain.

As long as the stack frame backchain is not used, code generated with−mpacked−stackis call-com-
patible with code generated with−mno−packed−stack. Note that some non-FSF releases ofGCC
2.95 for S/390 or zSeries generated code that uses the stack frame backchain at run time, not just for
debugging purposes.Such code is not call-compatible with code compiled with−mpacked−stack.
Also, note that the combination of−mbackchain, −mpacked−stackand −mhard−float is not sup-
ported. Inorder to build a linux kernel use−msoft−float.

The default is to not use the packed stack layout.

−msmall−exec
−mno−small−exec

Generate (or do not generate) code using thebras instruction to do subroutine calls. This only works
reliably if the total executable size does not exceed 64k. The default is to use thebasr instruction
instead, which does not have this limitation.

−m64
−m31

When−m31 is specified, generate code compliant to the GNU/Linux for S/390ABI . When−m64 is
specified, generate code compliant to the GNU/Linux for zSeriesABI . This allows GCC in particular
to generate 64−bit instructions.For the s390 targets, the default is−m31, while the s390x targets
default to−m64.

−mzarch
−mesa

When−mzarch is specified, generate code using the instructions available on z/Architecture.When
−mesais specified, generate code using the instructions available onESA/390. Note that−mesais not
possible with−m64. When generating code compliant to the GNU/Linux for S/390ABI , the default is
−mesa. When generating code compliant to the GNU/Linux for zSeriesABI , the default is−mzarch.

−mmvcle
−mno−mvcle

Generate (or do not generate) code using themvcle instruction to perform block moves. When
−mno−mvcleis specified, use amvc loop instead. This is the default.

−mdebug
−mno−debug

Print (or do not print) additional debug information when compiling. The default is to not print debug
information.

−march=cpu-type
Generate code that will run oncpu-type, which is the name of a system representing a certain proces-
sor type. Possible values forcpu-typeareg5, g6, z900, and z990. When generating code using the
instructions available on z/Architecture, the default is−march=z900. Otherwise, the default is
−march=g5.

gcc-4.0.3 2006-04-20 122

GCC(1) GNU GCC(1)

−mtune=cpu-type
Tune tocpu-typeev erything applicable about the generated code, except for theABI and the set of
available instructions. The list ofcpu-typevalues is the same as for−march. The default is the value
used for−march.

−mtpf−trace
−mno−tpf−trace

Generate code that adds (does not add) inTPF OSspecific branches to trace routines in the operating
system. Thisoption is off by default, even when compiling for theTPF OS.

−mfused−madd
−mno−fused−madd

Generate code that uses (does not use) the floating point multiply and accumulate instructions.These
instructions are generated by default if hardware floating point is used.

−mwarn−framesize=framesize
Emit a warning if the current function exceeds the given frame size. Because this is a compile time
check it doesn’t need to be a real problem when the program runs.It is intended to identify functions
which most probably cause a stack overflow. It is useful to be used in an environment with limited
stack size e.g. the linux kernel.

−mwarn−dynamicstack
Emit a warning if the function calls alloca or uses dynamically sized arrays.This is generally a bad
idea with a limited stack size.

−mstack−guard=stack-guard
−mstack−size=stack-size

These arguments always have to be used in conjunction.If they are present the s390 back end emits
additional instructions in the function prologue which trigger a trap if the stack size isstack-guard
bytes above the stack-size(remember that the stack on s390 grows downward). Theseoptions are
intended to be used to help debugging stack overflow problems. Theadditionally emitted code cause
only little overhead and hence can also be used in production like systems without greater perfor-
mance degradation. Thegiven values have to be exact powers of 2 andstack-sizehas to be greater
thanstack-guard. In order to be efficient the extra code makes the assumption that the stack starts at
an address aligned to the value given by stack-size.

SHOptions

These−m options are defined for theSH implementations:

−m1
Generate code for theSH1.

−m2
Generate code for theSH2.

−m2e
Generate code for the SH2e.

−m3
Generate code for theSH3.

−m3e
Generate code for the SH3e.

−m4−nofpu
Generate code for theSH4without a floating-point unit.

−m4−single−only
Generate code for theSH4with a floating-point unit that only supports single-precision arithmetic.

gcc-4.0.3 2006-04-20 123

GCC(1) GNU GCC(1)

−m4−single
Generate code for theSH4assuming the floating-point unit is in single-precision mode by default.

−m4
Generate code for theSH4.

−m4a−nofpu
Generate code for the SH4al−dsp, or for a SH4a in such a way that the floating-point unit is not used.

−m4a−single−only
Generate code for the SH4a, in such a way that no double-precision floating point operations are used.

−m4a−single
Generate code for the SH4a assuming the floating-point unit is in single-precision mode by default.

−m4a
Generate code for the SH4a.

−m4al
Same as−m4a−nofpu, except that it implicitly passes−dsp to the assembler. GCC doesn’t generate
anyDSPinstructions at the moment.

−mb
Compile code for the processor in big endian mode.

−ml
Compile code for the processor in little endian mode.

−mdalign
Align doubles at 64−bit boundaries.Note that this changes the calling conventions, and thus some
functions from the standard C library will not work unless you recompile it first with−mdalign.

−mrelax
Shorten some address references at link time, when possible; uses the linker option−relax.

−mbigtable
Use 32−bit offsets inswitch tables. Thedefault is to use 16−bit offsets.

−mfmovd
Enable the use of the instructionfmovd .

−mhitachi
Comply with the calling conventions defined by Renesas.

−mrenesas
Comply with the calling conventions defined by Renesas.

−mno−renesas
Comply with the calling conventions defined forGCC before the Renesas conventions were available.
This option is the default for all targets of theSH toolchain except forsh-symbianelf.

−mnomacsave
Mark theMACregister as call−clobbered, even if −mhitachi is given.

−mieee
Increase IEEE-compliance of floating-point code.

−misize
Dump instruction size and location in the assembly code.

−mpadstruct
This option is deprecated.It pads structures to multiple of 4 bytes, which is incompatible with theSH
ABI .

gcc-4.0.3 2006-04-20 124

GCC(1) GNU GCC(1)

−mspace
Optimize for space instead of speed. Implied by−Os.

−mprefergot
When generating position-independent code, emit function calls using the Global Offset Table instead
of the Procedure Linkage Table.

−musermode
Generate a library function call to invalidate instruction cache entries, after fixing up a trampoline.
This library function call doesn’t assume it can write to the whole memory address space.This is the
default when the target issh−*−linux* .

SPARCOptions

These−m options are supported on theSPARC:

−mno−app−regs
−mapp−regs

Specify−mapp−regsto generate output using the global registers 2 through 4, which theSPARC SVR4
ABI reserves for applications. This is the default.

To be fully SVR4 ABI compliant at the cost of some performance loss, specify−mno−app−regs. You
should compile libraries and system software with this option.

−mfpu
−mhard−float

Generate output containing floating point instructions. This is the default.

−mno−fpu
−msoft−float

Generate output containing library calls for floating point.Warning: the requisite libraries are not
available for allSPARCtargets. Normallythe facilities of the machine’s usual C compiler are used, but
this cannot be done directly in cross−compilation.You must make your own arrangements to provide
suitable library functions for cross−compilation. The embedded targets sparc−*−aout and spar-
clite−*−* do provide software floating point support.

−msoft−float changes the calling convention in the output file; therefore, it is only useful if you com-
pile all of a program with this option. In particular, you need to compilelibgcc.a, the library that
comes withGCC, with −msoft−float in order for this to work.

−mhard−quad−float
Generate output containing quad-word (long double) floating point instructions.

−msoft−quad−float
Generate output containing library calls for quad-word (long double) floating point instructions.The
functions called are those specified in theSPARC ABI. This is the default.

As of this writing, there are noSPARCimplementations that have hardware support for the quad-word
floating point instructions.They all invoke a trap handler for one of these instructions, and then the
trap handler emulates the effect of the instruction.Because of the trap handler overhead, this is much
slower than calling theABI library routines. Thus the−msoft−quad−floatoption is the default.

−mno−unaligned−doubles
−munaligned−doubles

Assume that doubles have 8 byte alignment. This is the default.

With −munaligned−doubles, GCC assumes that doubles have 8 byte alignment only if they are con-
tained in another type, or if they hav ean absolute address. Otherwise, it assumes they hav e4 byte
alignment. Specifyingthis option avoids some rare compatibility problems with code generated by
other compilers. It is not the default because it results in a performance loss, especially for floating
point code.

gcc-4.0.3 2006-04-20 125

GCC(1) GNU GCC(1)

−mno−faster−structs
−mfaster−structs

With −mfaster−structs, the compiler assumes that structures should have 8 byte alignment. This
enables the use of pairs ofldd andstd instructions for copies in structure assignment, in place of
twice as many ld and st pairs. However, the use of this changed alignment directly violates the
SPARC ABI. Thus, it’s intended only for use on targets where the developer acknowledges that their
resulting code will not be directly in line with the rules of theABI .

−mimpure−text
−mimpure−text, used in addition to−shared, tells the compiler to not pass−z text to the linker when
linking a shared object. Using this option, you can link position-dependent code into a shared object.

−mimpure−text suppresses the ‘‘relocations remain against allocatable but non-writable sections’’
linker error message.However, the necessary relocations will trigger copy−on−write, and the shared
object is not actually shared across processes.Instead of using−mimpure−text, you should compile
all source code with−fpic or −fPIC .

This option is only available on SunOS and Solaris.

−mcpu=cpu_type
Set the instruction set, register set, and instruction scheduling parameters for machine typecpu_type.
Supported values forcpu_typeare v7, cypress, v8, supersparc, sparclite, f930, f934, hypersparc,
sparclite86x, sparclet, tsc701, v9, ultrasparc, andultrasparc3.

Default instruction scheduling parameters are used for values that select an architecture and not an
implementation. Thesearev7, v8, sparclite, sparclet, v9.

Here is a list of each supported architecture and their supported implementations.

v7: cypress
v8: supersparc, hypersparc
sparclite: f930, f934, sparclite86x
sparclet: tsc701
v9: ultrasparc, ultrasparc3

By default (unless configured otherwise),GCC generates code for the V7 variant of theSPARCarchi-
tecture. With −mcpu=cypress, the compiler additionally optimizes it for the CypressCY7C602chip,
as used in the SPARCStation/SPARCServer 3xx series.This is also appropriate for the older SPARC-
Station 1, 2,IPX etc.

With −mcpu=v8, GCC generates code for the V8 variant of theSPARCarchitecture. Theonly differ-
ence from V7 code is that the compiler emits the integer multiply and integer divide instructions which
exist in SPARC−V8but not in SPARC−V7. With −mcpu=supersparc, the compiler additionally opti-
mizes it for the SuperSPARC chip, as used in the SPARCStation 10, 1000 and 2000 series.

With −mcpu=sparclite, GCC generates code for the SPARClite variant of theSPARC architecture.
This adds the integer multiply, integer divide step and scan (ffs) instructions which exist in SPAR-
Clite but not inSPARC−V7. With −mcpu=f930, the compiler additionally optimizes it for the Fujitsu
MB86930chip, which is the original SPARClite, with noFPU. With −mcpu=f934, the compiler addi-
tionally optimizes it for the FujitsuMB86934chip, which is the more recent SPARClite withFPU.

With −mcpu=sparclet, GCCgenerates code for the SPARClet variant of theSPARCarchitecture. This
adds the integer multiply, multiply/accumulate, integer divide step and scan (ffs) instructions which
exist in SPARClet but not inSPARC−V7. With −mcpu=tsc701, the compiler additionally optimizes it
for theTEMIC SPARClet chip.

With −mcpu=v9, GCC generates code for the V9 variant of theSPARCarchitecture. Thisadds 64−bit
integer and floating-point move instructions, 3 additional floating-point condition code registers and
conditional move instructions. With −mcpu=ultrasparc, the compiler additionally optimizes it for the
Sun UltraSPARC I/II chips.With −mcpu=ultrasparc3, the compiler additionally optimizes it for the
Sun UltraSPARCIII chip.

gcc-4.0.3 2006-04-20 126

GCC(1) GNU GCC(1)

−mtune=cpu_type
Set the instruction scheduling parameters for machine typecpu_type, but do not set the instruction set
or register set that the option−mcpu=cpu_typewould.

The same values for−mcpu=cpu_typecan be used for−mtune=cpu_type, but the only useful values
are those that select a particular cpu implementation.Those arecypress, supersparc, hypersparc,
f930, f934, sparclite86x, tsc701, ultrasparc, andultrasparc3.

−mv8plus
−mno−v8plus

With −mv8plus, GCCgenerates code for theSPARC−V8+ ABI. The difference from the V8ABI is that
the global and out registers are considered 64−bit wide.This is enabled by default on Solaris in 32−bit
mode for allSPARC−V9processors.

−mvis
−mno−vis

With −mvis, GCC generates code that takes advantage of the UltraSPARC Visual Instruction Set
extensions. Thedefault is−mno−vis.

These−m options are supported in addition to the above on SPARC−V9processors in 64−bit environments:

−mlittle−endian
Generate code for a processor running in little-endian mode.It is only available for a few configura-
tions and most notably not on Solaris and Linux.

−m32
−m64

Generate code for a 32−bit or 64−bit environment. The32−bit environment sets int, long and pointer
to 32 bits. The 64−bit environment sets int to 32 bits and long and pointer to 64 bits.

−mcmodel=medlow
Generate code for the Medium/Low code model: 64−bit addresses, programs must be linked in the low
32 bits of memory. Programs can be statically or dynamically linked.

−mcmodel=medmid
Generate code for the Medium/Middle code model: 64−bit addresses, programs must be linked in the
low 44 bits of memory, the text and data segments must be less than 2GB in size and the data segment
must be located within 2GB of the text segment.

−mcmodel=medany
Generate code for the Medium/Anywhere code model: 64−bit addresses, programs may be linked any-
where in memory, the text and data segments must be less than 2GB in size and the data segment must
be located within 2GB of the text segment.

−mcmodel=embmedany
Generate code for the Medium/Anywhere code model for embedded systems: 64−bit addresses, the
text and data segments must be less than 2GB in size, both starting anywhere in memory (determined
at link time). The global register%g4points to the base of the data segment. Programsare statically
linked andPIC is not supported.

−mstack−bias
−mno−stack−bias

With −mstack−bias, GCC assumes that the stack pointer, and frame pointer if present, are offset by
−2047 which must be added back when making stack frame references.This is the default in 64−bit
mode. Otherwise,assume no such offset is present.

These switches are supported in addition to the above on Solaris:

−threads
Add support for multithreading using the Solaris threads library. This option sets flags for both the
preprocessor and linker. This option does not affect the thread safety of object code produced by the
compiler or that of libraries supplied with it.

gcc-4.0.3 2006-04-20 127

GCC(1) GNU GCC(1)

−pthreads
Add support for multithreading using thePOSIX threads library. This option sets flags for both the
preprocessor and linker. This option does not affect the thread safety of object code produced by the
compiler or that of libraries supplied with it.

Options for System V

These additional options are available on System V Release 4 for compatibility with other compilers on
those systems:

−G Create a shared object. It is recommended that−symbolicor −sharedbe used instead.

−Qy
Identify the versions of each tool used by the compiler, in a .ident assembler directive in the output.

−Qn
Refrain from adding.ident directives to the output file (this is the default).

−YP,dirs
Search the directoriesdirs, and no others, for libraries specified with−l.

−Ym,dir
Look in the directorydir to find the M4 preprocessor. The assembler uses this option.

TMS320C3x/C4x Options

These−m options are defined for TMS320C3x/C4x implementations:

−mcpu=cpu_type
Set the instruction set, register set, and instruction scheduling parameters for machine typecpu_type.
Supported values forcpu_typearec30, c31, c32, c40, and c44. The default isc40 to generate code for
theTMS320C40.

−mbig−memory
−mbig
−msmall−memory
−msmall

Generates code for the big or small memory model.The small memory model assumed that all data
fits into one 64K word page. At run-time the data page (DP) register must be set to point to the 64K
page containing the .bss and .data program sections. The big memory model is the default and
requires reloading of theDP register for every direct memory access.

−mbk
−mno−bk

Allow (disallow) allocation of general integer operands into the block count registerBK.

−mdb
−mno−db

Enable (disable) generation of code using decrement and branch, DBcond(D), instructions. This is
enabled by default for the C4x.To be on the safe side, this is disabled for the C3x, since the maximum
iteration count on the C3x is 2ˆ{23 + 1} (but who iterates loops more than 2ˆ{23} times on the C3x?).
Note thatGCCwill try to reverse a loop so that it can utilize the decrement and branch instruction, but
will give up if there is more than one memory reference in the loop. Thus a loop where the loop
counter is decremented can generate slightly more efficient code, in cases where theRPTB instruction
cannot be utilized.

−mdp−isr−reload
−mparanoid

Force theDP register to be saved on entry to an interrupt service routine (ISR), reloaded to point to the
data section, and restored on exit from theISR. This should not be required unless someone has vio-
lated the small memory model by modifying theDP register, say within an object library.

gcc-4.0.3 2006-04-20 128

GCC(1) GNU GCC(1)

−mmpyi
−mno−mpyi

For the C3x use the 24−bitMPYI instruction for integer multiplies instead of a library call to guarantee
32−bit results.Note that if one of the operands is a constant, then the multiplication will be performed
using shifts and adds. If the−mmpyi option is not specified for the C3x, then squaring operations are
performed inline instead of a library call.

−mfast−fix
−mno−fast−fix

The C3x/C4xFIX instruction to convert a floating point value to an integer value chooses the nearest
integer less than or equal to the floating point value rather than to the nearest integer. Thus if the float-
ing point number is negative, the result will be incorrectly truncated an additional code is necessary to
detect and correct this case.This option can be used to disable generation of the additional code
required to correct the result.

−mrptb
−mno−rptb

Enable (disable) generation of repeat block sequences using theRPTB instruction for zero overhead
looping. TheRPTB construct is only used for innermost loops that do not call functions or jump
across the loop boundaries. There is no advantage having nestedRPTB loops due to the overhead
required to save and restore theRC, RS, and RE registers. Thisis enabled by default with−O2.

−mrpts=count
−mno−rpts

Enable (disable) the use of the single instruction repeat instructionRPTS. If a repeat block contains a
single instruction, and the loop count can be guaranteed to be less than the valuecount, GCCwill emit
a RPTSinstruction instead of aRPTB. If no value is specified, then aRPTSwill be emitted even if the
loop count cannot be determined at compile time.Note that the repeated instruction following RPTS
does not have to be reloaded from memory each iteration, thus freeing up theCPUbuses for operands.
However, since interrupts are blocked by this instruction, it is disabled by default.

−mloop−unsigned
−mno−loop−unsigned

The maximum iteration count when usingRPTSandRPTB (andDB on the C40) is 2ˆ{31 + 1} since
these instructions test if the iteration count is negative to terminate the loop. If the iteration count is
unsigned there is a possibility than the 2ˆ{31 + 1} maximum iteration count may be exceeded. This
switch allows an unsigned iteration count.

−mti
Try to emit an assembler syntax that theTI assembler (asm30) is happy with. Thisalso enforces com-
patibility with theAPI employed by theTI C3x C compiler. For example, long doubles are passed as
structures rather than in floating point registers.

−mregparm
−mmemparm

Generate code that uses registers (stack) for passing arguments to functions.By default, arguments are
passed in registers where possible rather than by pushing arguments on to the stack.

−mparallel−insns
−mno−parallel−insns

Allow the generation of parallel instructions. This is enabled by default with−O2.

−mparallel−mpy
−mno−parallel−mpy

Allow the generation of MPY ADD and MPY SUB parallel instructions, provided −mparal-
lel−insns is also specified. These instructions have tight register constraints which can pessimize the
code generation of large functions.

V850 Options

gcc-4.0.3 2006-04-20 129

GCC(1) GNU GCC(1)

These−m options are defined for V850 implementations:

−mlong−calls
−mno−long−calls

Treat all calls as being far away (near). Ifcalls are assumed to be far away, the compiler will always
load the functions address up into a register, and call indirect through the pointer.

−mno−ep
−mep

Do not optimize (do optimize) basic blocks that use the same index pointer 4 or more times to copy
pointer into theep register, and use the shortersld andsst instructions. The−mep option is on by
default if you optimize.

−mno−prolog−function
−mprolog−function

Do not use (do use) external functions to save and restore registers at the prologue and epilogue of a
function. Theexternal functions are slower, but use less code space if more than one function saves
the same number of registers. The−mprolog−function option is on by default if you optimize.

−mspace
Try to make the code as small as possible. At present, this just turns on the−mep and −mpro-
log−function options.

−mtda=n
Put static or global variables whose size isn bytes or less into the tiny data area that registerep points
to. Thetiny data area can hold up to 256 bytes in total (128 bytes for byte references).

−msda=n
Put static or global variables whose size isn bytes or less into the small data area that register gp
points to. The small data area can hold up to 64 kilobytes.

−mzda=n
Put static or global variables whose size isn bytes or less into the first 32 kilobytes of memory.

−mv850
Specify that the target processor is the V850.

−mbig−switch
Generate code suitable for big switch tables. Use this option only if the assembler/linker complain
about out of range branches within a switch table.

−mapp−regs
This option will cause r2 and r5 to be used in the code generated by the compiler. This setting is the
default.

−mno−app−regs
This option will cause r2 and r5 to be treated as fixed registers.

−mv850e1
Specify that the target processor is the V850E1. The preprocessor constants_ _v850e1_ _and
_ _v850e_ _will be defined if this option is used.

−mv850e
Specify that the target processor is the V850E. The preprocessor constant_ _v850e_ _will be defined
if this option is used.

If neither−mv850nor −mv850enor −mv850e1are defined then a default target processor will be cho-
sen and the relevant _ _v850*_ _preprocessor constant will be defined.

The preprocessor constants_ _v850and_ _v851_ _are always defined, regardless of which processor
variant is the target.

gcc-4.0.3 2006-04-20 130

GCC(1) GNU GCC(1)

−mdisable−callt
This option will suppress generation of theCALLT instruction for the v850e and v850e1 flavors of the
v850 architecture. The default is−mno−disable−calltwhich allows theCALLT instruction to be used.

VAX Options

These−m options are defined for theVAX:

−munix
Do not output certain jump instructions (aobleq and so on) that the Unix assembler for theVAX can-
not handle across long ranges.

−mgnu
Do output those jump instructions, on the assumption that you will assemble with theGNU assembler.

−mg
Output code for g−format floating point numbers instead of d−format.

x86−64 Options

These are listed under

Xstormy16 Options

These options are defined for Xstormy16:

−msim
Choose startup files and linker script suitable for the simulator.

Xtensa Options

These options are supported for Xtensa targets:

−mconst16
−mno−const16

Enable or disable use ofCONST16instructions for loading constant values. TheCONST16instruc-
tion is currently not a standard option from Tensilica. Whenenabled,CONST16instructions are
always used in place of the standardL32R instructions. Theuse ofCONST16is enabled by default
only if theL32R instruction is not available.

−mfused−madd
−mno−fused−madd

Enable or disable use of fused multiply/add and multiply/subtract instructions in the floating-point
option. Thishas no effect if the floating-point option is not also enabled. Disabling fused multi-
ply/add and multiply/subtract instructions forces the compiler to use separate instructions for the mul-
tiply and add/subtract operations. This may be desirable in some cases where strictIEEE 754−compli-
ant results are required: the fused multiply add/subtract instructions do not round the intermediate
result, thereby producing results withmorebits of precision than specified by theIEEE standard. Dis-
abling fused multiply add/subtract instructions also ensures that the program output is not sensitive to
the compiler’s ability to combine multiply and add/subtract operations.

−mtext−section−literals
−mno−text−section−literals

Control the treatment of literal pools. The default is−mno−text−section−literals, which places liter-
als in a separate section in the output file.This allows the literal pool to be placed in a data
RAM/ROM, and it also allows the linker to combine literal pools from separate object files to remove
redundant literals and improve code size.With −mtext−section−literals, the literals are interspersed
in the text section in order to keep them as close as possible to their references. This may be necessary
for large assembly files.

−mtarget−align
−mno−target−align

When this option is enabled,GCC instructs the assembler to automatically align instructions to reduce
branch penalties at the expense of some code density. The assembler attempts to widen density

gcc-4.0.3 2006-04-20 131

GCC(1) GNU GCC(1)

instructions to align branch targets and the instructions following call instructions.If there are not
enough preceding safe density instructions to align a target, no widening will be performed.The
default is−mtarget−align. These options do not affect the treatment of auto-aligned instructions like
LOOP, which the assembler will always align, either by widening density instructions or by inserting
no-op instructions.

−mlongcalls
−mno−longcalls

When this option is enabled,GCC instructs the assembler to translate direct calls to indirect calls
unless it can determine that the target of a direct call is in the range allowed by the call instruction.
This translation typically occurs for calls to functions in other source files.Specifically, the assembler
translates a directCALL instruction into anL32R followed by aCALLX instruction. Thedefault is
−mno−longcalls. This option should be used in programs where the call target can potentially be out
of range. This option is implemented in the assembler, not the compiler, so the assembly code gener-
ated byGCC will still show direct call instructions−−−look at the disassembled object code to see the
actual instructions.Note that the assembler will use an indirect call for every cross-file call, not just
those that really will be out of range.

zSeries Options

These are listed under

Options for Code Generation Conventions

These machine-independent options control the interface conventions used in code generation.

Most of them have both positive and negative forms; the negative form of−ffoo would be−fno−foo. In the
table below, only one of the forms is listed−−−the one which is not the default. You can figure out the other
form by either removingno− or adding it.

−fbounds−check
For front-ends that support it, generate additional code to check that indices used to access arrays are
within the declared range. This is currently only supported by the Java and Fortran 77 front−ends,
where this option defaults to true and false respectively.

−ftrapv
This option generates traps for signed overflow on addition, subtraction, multiplication operations.

−fwrapv
This option instructs the compiler to assume that signed arithmetic overflow of addition, subtraction
and multiplication wraps around using twos-complement representation. This flag enables some opti-
mizations and disables others. This option is enabled by default for the Java front−end, as required by
the Java language specification.

−fexceptions
Enable exception handling. Generates extra code needed to propagate exceptions. For some targets,
this impliesGCCwill generate frame unwind information for all functions, which can produce signifi-
cant data size overhead, although it does not affect execution. If you do not specify this option,GCC
will enable it by default for languages like C++ which normally require exception handling, and disable
it for languages like C that do not normally require it.However, you may need to enable this option
when compiling C code that needs to interoperate properly with exception handlers written in C++.
You may also wish to disable this option if you are compiling older C++ programs that don’t use excep-
tion handling.

−fnon−call−exceptions
Generate code that allows trapping instructions to throw exceptions. Notethat this requires platform-
specific runtime support that does not exist everywhere. Moreover, it only allows trapping instructions
to throw exceptions, i.e. memory references or floating point instructions.It does not allow exceptions
to be thrown from arbitrary signal handlers such asSIGALRM.

gcc-4.0.3 2006-04-20 132

GCC(1) GNU GCC(1)

−funwind−tables
Similar to−fexceptions, except that it will just generate any needed static data, but will not affect the
generated code in any other way. You will normally not enable this option; instead, a language proces-
sor that needs this handling would enable it on your behalf.

−fasynchronous−unwind−tables
Generate unwind table in dwarf2 format, if supported by target machine.The table is exact at each
instruction boundary, so it can be used for stack unwinding from asynchronous events (such as debug-
ger or garbage collector).

−fpcc−struct−return
Return ‘‘short’’ struct andunion values in memory like longer ones, rather than in registers. This
convention is less efficient, but it has the advantage of allowing intercallability between GCC-com-
piled files and files compiled with other compilers, particularly the Portable C Compiler (pcc).

The precise convention for returning structures in memory depends on the target configuration macros.

Short structures and unions are those whose size and alignment match that of some integer type.

Warning: code compiled with the−fpcc−struct−return switch is not binary compatible with code
compiled with the−freg−struct−return switch. Useit to conform to a non-default application binary
interface.

−freg−struct−return
Returnstruct andunion values in registers when possible. This is more efficient for small struc-
tures than−fpcc−struct−return .

If you specify neither−fpcc−struct−return nor −freg−struct−return , GCC defaults to whichever
convention is standard for the target. If there is no standard convention, GCC defaults to
−fpcc−struct−return , except on targets whereGCC is the principal compiler. In those cases, we can
choose the standard, and we chose the more efficient register return alternative.

Warning: code compiled with the−freg−struct−return switch is not binary compatible with code
compiled with the−fpcc−struct−return switch. Useit to conform to a non-default application binary
interface.

−fshort−enums
Allocate to anenum type only as many bytes as it needs for the declared range of possible values.
Specifically, theenum type will be equivalent to the smallest integer type which has enough room.

Warning: the−fshort−enumsswitch causesGCC to generate code that is not binary compatible with
code generated without that switch. Use it to conform to a non-default application binary interface.

−fshort−double
Use the same size fordouble as forfloat .

Warning: the−fshort−double switch causesGCC to generate code that is not binary compatible with
code generated without that switch. Use it to conform to a non-default application binary interface.

−fshort−wchar
Override the underlying type forwchar_t to beshort unsigned int instead of the default for the tar-
get. Thisoption is useful for building programs to run underWINE.

Warning: the−fshort−wchar switch causesGCC to generate code that is not binary compatible with
code generated without that switch. Use it to conform to a non-default application binary interface.

−fshared−data
Requests that the data and non−const variables of this compilation be shared data rather than private
data. Thedistinction makes sense only on certain operating systems, where shared data is shared
between processes running the same program, while private data exists in one copy per process.

gcc-4.0.3 2006-04-20 133

GCC(1) GNU GCC(1)

−fno−common
In C, allocate even uninitialized global variables in the data section of the object file, rather than gener-
ating them as common blocks.This has the effect that if the same variable is declared (without
extern) in two different compilations, you will get an error when you link them.The only reason
this might be useful is if you wish to verify that the program will work on other systems which always
work this way.

−fno−ident
Ignore the#ident directive.

−finhibit−size−directive
Don’t output a.size assembler directive, or anything else that would cause trouble if the function is
split in the middle, and the two halves are placed at locations far apart in memory. This option is used
when compilingcrtstuff.c; you should not need to use it for anything else.

−fverbose−asm
Put extra commentary information in the generated assembly code to make it more readable.This
option is generally only of use to those who actually need to read the generated assembly code (per-
haps while debugging the compiler itself).

−fno−verbose−asm, the default, causes the extra information to be omitted and is useful when com-
paring two assembler files.

−fpic
Generate position-independent code (PIC) suitable for use in a shared library, if supported for the tar-
get machine. Such code accesses all constant addresses through a global offset table (GOT). The
dynamic loader resolves theGOT entries when the program starts (the dynamic loader is not part of
GCC; it is part of the operating system). If theGOT size for the linked executable exceeds a machine-
specific maximum size, you get an error message from the linker indicating that−fpic does not work;
in that case, recompile with−fPIC instead. (Thesemaximums are 8k on theSPARCand 32k on the
m68k andRS/6000. The 386 has no such limit.)

Position-independent code requires special support, and therefore works only on certain machines.
For the 386,GCC supportsPIC for System V but not for the Sun 386i. Code generated for theIBM
RS/6000is always position−independent.

−fPIC
If supported for the target machine, emit position-independent code, suitable for dynamic linking and
avoiding any limit on the size of the global offset table. This option makes a difference on the m68k,
PowerPC andSPARC.

Position-independent code requires special support, and therefore works only on certain machines.

−fpie
−fPIE

These options are similar to−fpic and−fPIC , but generated position independent code can be only
linked into executables. Usuallythese options are used when−pie GCC option will be used during
linking.

−ffixed−reg
Treat the register namedreg as a fixed register; generated code should never refer to it (except perhaps
as a stack pointer, frame pointer or in some other fixed role).

reg must be the name of a register. The register names accepted are machine-specific and are defined
in theREGISTER_NAMESmacro in the machine description macro file.

This flag does not have a neg ative form, because it specifies a three-way choice.

−fcall−used−reg
Treat the register namedreg as an allocable register that is clobbered by function calls.It may be allo-
cated for temporaries or variables that do not live across a call. Functions compiled this way will not
save and restore the registerreg.

gcc-4.0.3 2006-04-20 134

GCC(1) GNU GCC(1)

It is an error to used this flag with the frame pointer or stack pointer. Use of this flag for other regis-
ters that have fixed pervasive roles in the machine’s execution model will produce disastrous results.

This flag does not have a neg ative form, because it specifies a three-way choice.

−fcall−saved−reg
Treat the register namedreg as an allocable register saved by functions. Itmay be allocated even for
temporaries or variables that live across a call.Functions compiled this way will save and restore the
registerreg if they use it.

It is an error to used this flag with the frame pointer or stack pointer. Use of this flag for other regis-
ters that have fixed pervasive roles in the machine’s execution model will produce disastrous results.

A different sort of disaster will result from the use of this flag for a register in which function values
may be returned.

This flag does not have a neg ative form, because it specifies a three-way choice.

−fpack−struct[=n]
Without a value specified, pack all structure members together without holes. When a value is speci-
fied (which must be a small power of two), pack structure members according to this value, represent-
ing the maximum alignment (that is, objects with default alignment requirements larger than this will
be output potentially unaligned at the next fitting location.

Warning: the −fpack−struct switch causesGCC to generate code that is not binary compatible with
code generated without that switch.Additionally, it makes the code suboptimal.Use it to conform to
a non-default application binary interface.

−finstrument−functions
Generate instrumentation calls for entry and exit to functions. Just after function entry and just before
function exit, the following profiling functions will be called with the address of the current function
and its call site.(On some platforms,_ _builtin_return_address does not work beyond the
current function, so the call site information may not be available to the profiling functions otherwise.)

void __cyg_profile_func_enter (void *this_fn,
void *call_site);

void __cyg_profile_func_exit (void *this_fn,
void *call_site);

The first argument is the address of the start of the current function, which may be looked up exactly
in the symbol table.

This instrumentation is also done for functions expanded inline in other functions. The profiling calls
will indicate where, conceptually, the inline function is entered and exited. Thismeans that address-
able versions of such functions must be available. If all your uses of a function are expanded inline,
this may mean an additional expansion of code size. If you useextern inline in your C code, an
addressable version of such functions must be provided. (Thisis normally the case anyways, but if
you get lucky and the optimizer always expands the functions inline, you might have gotten away
without providing static copies.)

A function may be given the attributeno_instrument_function , in which case this instrumen-
tation will not be done. This can be used, for example, for the profiling functions listed above, high-
priority interrupt routines, and any functions from which the profiling functions cannot safely be called
(perhaps signal handlers, if the profiling routines generate output or allocate memory).

−fstack−check
Generate code to verify that you do not go beyond the boundary of the stack.You should specify this
flag if you are running in an environment with multiple threads, but only rarely need to specify it in a
single-threaded environment since stack overflow is automatically detected on nearly all systems if
there is only one stack.

Note that this switch does not actually cause checking to be done; the operating system must do that.

gcc-4.0.3 2006-04-20 135

GCC(1) GNU GCC(1)

The switch causes generation of code to ensure that the operating system sees the stack being
extended.

−fstack−limit−register=reg
−fstack−limit−symbol=sym
−fno−stack−limit

Generate code to ensure that the stack does not grow beyond a certain value, either the value of a reg-
ister or the address of a symbol. If the stack would grow beyond the value, a signal is raised.For
most targets, the signal is raised before the stack overruns the boundary, so it is possible to catch the
signal without taking special precautions.

For instance, if the stack starts at absolute address0x80000000and grows downwards, you can use the
flags −fstack−limit−symbol=_ _stack_limit and −Wl,−−defsym,_ _stack_limit=0x7ffe0000 to
enforce a stack limit of 128KB. Note that this may only work with theGNU linker.

−fargument−alias
−fargument−noalias
−fargument−noalias−global

Specify the possible relationships among parameters and between parameters and global data.

−fargument−alias specifies that arguments (parameters) may alias each other and may alias global
storage.−fargument−noalias specifies that arguments do not alias each other, but may alias global
storage.−fargument−noalias−globalspecifies that arguments do not alias each other and do not alias
global storage.

Each language will automatically use whatever option is required by the language standard.You
should not need to use these options yourself.

−fleading−underscore
This option and its counterpart,−fno−leading−underscore, forcibly change the way C symbols are
represented in the object file. One use is to help link with legacy assembly code.

Warning: the−fleading−underscoreswitch causesGCC to generate code that is not binary compati-
ble with code generated without that switch. Use it to conform to a non-default application binary
interface. Notall targets provide complete support for this switch.

−ftls−model=model
Alter the thread-local storage model to be used.The model argument should be one of
global−dynamic , local−dynamic , initial−exec or local−exec .

The default without−fpic is initial−exec ; with −fpic the default isglobal−dynamic .

−fvisibility= default internal hidden protected
Set the default ELF image symbol visibility to the specified option−−−all symbols will be marked with
this unless overridden within the code. Using this feature can very substantially improve linking and
load times of shared object libraries, produce more optimized code, provide near-perfectAPI export
and prevent symbol clashes. It isstrongly recommended that you use this in any shared objects you
distribute.

Despite the nomenclature,default always means public ie; available to be linked against from out-
side the shared object.protected and internal are pretty useless in real-world usage so the
only other commonly used option will behidden . The default if−fvisibility isn’t specified is
default , i.e., make every symbol public−−−this causes the same behavior as previous versions of
GCC.

A good explanation of the benefits offered by ensuringELF symbols have the correct visibility is given
by ‘‘How To Write Shared Libraries’’ by Ulrich Drepper (which can be found at <http://people.red-
hat.com/˜drepper/>)−−−however a superior solution made possible by this option to marking things
hidden when the default is public is to make the default hidden and mark things public.This is the
norm withDLL ’s on Windows and with−fvisibility=hidden and_ _attribute_ _ ((visibil-
ity("default"))) instead of_ _declspec(dllexport) you get almost identical semantics

gcc-4.0.3 2006-04-20 136

GCC(1) GNU GCC(1)

with identical syntax. This is a great boon to those working with cross-platform projects.

For those adding visibility support to existing code, you may find#pragma GCC visibility of use.
This works by you enclosing the declarations you wish to set visibility for with (for example)
#pragma GCC visibility push(hidden) and#pragma GCC visibility pop . These can be nested up to
sixteen times. Bear in mind that symbol visibility should be viewedas part of theAPI interface con-
tract and thus all new code should always specify visibility when it is not the default ie; declarations
only for use within the localDSO shouldalways be marked explicitly as hidden as so to avoid PLT
indirection overheads−−−making this abundantly clear also aids readability and self-documentation of
the code. Note that due toISO C++ specification requirements, operator new and operator delete must
always be of default visibility.

An overview of these techniques, their benefits and how to use them is at <http://www.ned-
prod.com/programs/gccvisibility.html>.

ENVIRONMENT
This section describes several environment variables that affect how GCCoperates. Someof them work by
specifying directories or prefixes to use when searching for various kinds of files. Some are used to specify
other aspects of the compilation environment.

Note that you can also specify places to search using options such as−B, −I and−L . These take prece-
dence over places specified using environment variables, which in turn take precedence over those specified
by the configuration ofGCC.

LANG
LC_CTYPE
LC_MESSAGES
LC_ALL

These environment variables control the way thatGCCuses localization information that allow GCC to
work with different national conventions. GCC inspects the locale categories LC_CTYPE and
LC_MESSAGES if it has been configured to do so. These locale categories can be set to any value
supported by your installation.A typical value isen_GB.UTF−8 for English in the United Kingdom
encoded inUTF−8.

The LC_CTYPE environment variable specifies character classification.GCC uses it to determine the
character boundaries in a string; this is needed for some multibyte encodings that contain quote and
escape characters that would otherwise be interpreted as a string end or escape.

TheLC_MESSAGES environment variable specifies the language to use in diagnostic messages.

If the LC_ALL environment variable is set, it overrides the value ofLC_CTYPE andLC_MESSAGES;
otherwise,LC_CTYPE andLC_MESSAGES default to the value of theLANG environment variable. If
none of these variables are set,GCCdefaults to traditional C English behavior.

TMPDIR
If TMPDIR is set, it specifies the directory to use for temporary files.GCCuses temporary files to hold
the output of one stage of compilation which is to be used as input to the next stage: for example, the
output of the preprocessor, which is the input to the compiler proper.

GCC_EXEC_PREFIX
If GCC_EXEC_PREFIX is set, it specifies a prefix to use in the names of the subprograms executed by
the compiler. No slash is added when this prefix is combined with the name of a subprogram, but you
can specify a prefix that ends with a slash if you wish.

If GCC_EXEC_PREFIX is not set,GCCwill attempt to figure out an appropriate prefix to use based on
the pathname it was invoked with.

If GCCcannot find the subprogram using the specified prefix, it tries looking in the usual places for the
subprogram.

The default value ofGCC_EXEC_PREFIX is prefix/lib/gcc/whereprefix is the value ofprefix when

gcc-4.0.3 2006-04-20 137

GCC(1) GNU GCC(1)

you ran theconfigurescript.

Other prefixes specified with−B take precedence over this prefix.

This prefix is also used for finding files such ascrt0.o that are used for linking.

In addition, the prefix is used in an unusual way in finding the directories to search for header files.
For each of the standard directories whose name normally begins with /usr/local/lib/gcc (more pre-
cisely, with the value ofGCC_INCLUDE_DIR), GCC tries replacing that beginning with the specified
prefix to produce an alternate directory name.Thus, with−Bfoo/, GCC will searchfoo/bar where it
would normally search/usr/local/lib/bar. These alternate directories are searched first; the standard
directories come next.

COMPILER_PATH
The value ofCOMPILER_PATH is a colon-separated list of directories, much like PATH . GCC tries
the directories thus specified when searching for subprograms, if it can’t find the subprograms using
GCC_EXEC_PREFIX.

LIBRARY_P ATH
The value ofLIBRARY_P ATH is a colon-separated list of directories, much like PATH . When config-
ured as a native compiler, GCC tries the directories thus specified when searching for special linker
files, if it can’t find them usingGCC_EXEC_PREFIX. Linking usingGCC also uses these directories
when searching for ordinary libraries for the−l option (but directories specified with−L come first).

LANG
This variable is used to pass locale information to the compiler. One way in which this information is
used is to determine the character set to be used when character literals, string literals and comments
are parsed in C and C++. When the compiler is configured to allow multibyte characters, the following
values forLANG are recognized:

C−JIS
RecognizeJIScharacters.

C−SJIS
RecognizeSJIScharacters.

C−EUCJP
RecognizeEUCJPcharacters.

If LANG is not defined, or if it has some other value, then the compiler will use mblen and mbtowc as
defined by the default locale to recognize and translate multibyte characters.

Some additional environments variables affect the behavior of the preprocessor.

CPATH
C_INCLUDE_PATH
CPLUS_INCLUDE_PATH
OBJC_INCLUDE_PATH

Each variable’s value is a list of directories separated by a special character, much like PATH , in which
to look for header files. The special character, PATH_SEPARATOR, is target-dependent and deter-
mined atGCC build time. For Microsoft Windows-based targets it is a semicolon, and for almost all
other targets it is a colon.

CPATH specifies a list of directories to be searched as if specified with−I , but after any paths given
with −I options on the command line. This environment variable is used regardless of which language
is being preprocessed.

The remaining environment variables apply only when preprocessing the particular language indi-
cated. Eachspecifies a list of directories to be searched as if specified with−isystem, but after any
paths given with −isystemoptions on the command line.

In all these variables, an empty element instructs the compiler to search its current working directory.
Empty elements can appear at the beginning or end of a path.For instance, if the value ofCPATH is

gcc-4.0.3 2006-04-20 138

GCC(1) GNU GCC(1)

:/special/include , that has the same effect as−I. −I/special/include.

DEPENDENCIES_OUTPUT
If this variable is set, its value specifies how to output dependencies for Make based on the non-system
header files processed by the compiler. System header files are ignored in the dependency output.

The value ofDEPENDENCIES_OUTPUT can be just a file name, in which case the Make rules are
written to that file, guessing the target name from the source file name.Or the value can have the form
file target, in which case the rules are written to filefile usingtarget as the target name.

In other words, this environment variable is equivalent to combining the options−MM and−MF , with
an optional−MT switch too.

SUNPRO_DEPENDENCIES
This variable is the same asDEPENDENCIES_OUTPUT (see above), except that system header files
are not ignored, so it implies−M rather than−MM . Howev er, the dependence on the main input file is
omitted.

BUGS
For instructions on reporting bugs, see <http://gcc.gnu.org/bugs.html>.

FOOTNOTES
1. Onsome systems,gcc −shared needs to build supplementary stub code for constructors to work. On

multi-libbed systems,gcc −shared must select the correct support libraries to link against. Failing to
supply the correct flags may lead to subtle defects. Supplying them in cases where they are not neces-
sary is innocuous.

SEE ALSO
gpl (7), gfdl (7), fsf−funding(7), cpp(1), gcov(1), as(1), ld (1), gdb(1), adb(1), dbx(1), sdb(1) and the Info
entries forgcc, cpp, as, ld, binutilsandgdb.

AUTHOR
See the Info entry forgcc, or <http://gcc.gnu.org/onlinedocs/gcc/Contributors.html>, for contributors to
GCC.

COPYRIGHT
Copyright (c) 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004,
2005 Free Software Foundation, Inc.

Permission is granted to copy, distribute and/or modify this document under the terms of theGNU Free
Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with
the Invariant Sections being ‘‘GNU General Public License’’ and ‘‘Funding Free Software’’, the Front-
Cover texts being (a) (see below), and with the Back-Cover Texts being (b) (see below). A copy of the
license is included in thegfdl (7) man page.

(a) TheFSF’s Front-Cover Text is:

A GNU Manual

(b) TheFSF’s Back-Cover Text is:

You have freedom to copy and modify this GNU Manual, like GNU
software. Copies published by the Free Software Foundation raise
funds for GNU development.

gcc-4.0.3 2006-04-20 139

