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Abstract / ‘

Graph-structured data is ubiquitous throughout the natural and social sciences,
from telecommunication networks to quantum chemistry. Building relational inductive
biases into deep learning architectures is crucial if/we want systems that can learn,
réﬁl, and generalize from this kind of data. Recent years have seen a surge in research

on graph representation learning, including techuiques for deep graph embeddings,@
6? gelwmmmﬂﬁégw&m, and neural @D

message-passing approaches inspired by belief prppagation. These advances in graph

representaTion Tearing have 1ed to new state-of-the-art results in numerous domains,

including chemical synthesis, 3D-vision, recommender systems, question answering,

and social network analysis.

The goal of this book is to provide a synthesis and overview of graph representation
learning. We begin with a discussion of the goals of graph representation learning, as
well as key methodological foundations in graph theory and network analysis. Follow-
ing this, we introduce and review methods for learning node embeddings, including
random-walk based methods and applications to knowledge graphs. We then provide
a technical synthesis and introduction to the highly successful graph neural network
(GNN) formalism, which has become a dominant and fast-growing paradigm for deep
learning with graph data. The book concludes with a synthesis of recent advancements
in deep generative models for graphs—a nascent, but quickly growing subset of graph
representation learning.
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Preface From 208

The field of graph representation learnﬁlg has grown at an incredible-and some-
times unwieldy—pace over the past seven years. I first encountered this area as
a graduate student in 2013, during the time when many researchers began in-
vestigating deep learning methods for “embedding” graph-structured data. In
the years since 2013, the field of graph representation learning has witnessed
a truly impressive rise and expansion—from the development of the standard
graph neural network paradigm to the nascent work on deep generative mod-
els of graph-structured data. The field has transformed from a small subset
of researchers working on a relatively niche topic to one of the fastest growing
sub-areas of deep learning.

However, as the field as grown, our understanding of the methods and the-
ories underlying graph representation learning has also stretched backwards
through time. We can now view the popular “node embedding” methods as
well-understood extensions of classic work on dimensionality redirction. We
now have an understanding and appreciation for how graph neural networks
evolved—somewhat independently—from historically rich lines of work on spec-
tral graph theory, harmonic analysis, variational inference, and the theory of
graph isomorphism. m my attempt to synthesize and summarize
thmmal threads in a practical way. My hope is to introduce the
reader to the current practice of the field, while also connecting this practice to
broader lines of historical research in machine learning and beyond.

Intended audience This book is intended for a graduate-level researcher
in machine learning or an advanced undergraduate student. The discussions
of graph-structured data and graph properties are relatively self-contained.
However, the book does assume a background in machine learning and a
familiarity with modern deep learning methods (e.g., convolutional and re-
cuiTent neural networks). Generally, the book assumes a level of machine
learning and deep learning knowledge that one would obtain from a text-
book such as GOWOE.

Williamn L. Hamilton
August 2020
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Chapter 1

Introduction

Graphs are a ubiquitous data structure and a universal language for describing
complex systems. In the most general view, a graph is simply a collection of
objects (i.e., nodes), along with a set of interactions (i.e., edges) between pairs of
these objects. For example, to encode a social network as a graph we might use
nodes to represent individuals and use edges to represent that two individuals
are friends (Figure 1.1). In the biological domain we could use the nodes in a
graph to represent proteins, and use the edges 10 represent various biological
interactions, such as kinetic interactions betwcen proteins.

relation

Figure 1.1: The famous Zachary Karate Club Network represents the friendship
relationships between members of a karate club studied by Wayne W. Zachary
from 1970 to 1972. An edge connects two individuals if they socialized outside
of the club. During Zachary’s study, the club split into two factions—centered
around nodes 0 and 33—and Zachary was able to correctly predict which nodes
would fall into each faction based on the graph structure [Zachary, 1977].

—

The power of the graph formalisin lies both in its focus on relationships
between points (rather than the properties of individual points), as well as in
its generality. The same graph formalism can be used to represent social net-
works, interactions between drugs and proteins, the interactions between atoms
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2 CHAPTER 1. INTRODUCTION

in a molecule, or the connections between terminals in a telecommunications
network—to name just a few examples.

Graphs do more than just provide an elegant theoretical framework, how-
ever. They offer a mathematical foundation that we can build upon to analyze,
understand, and learn from real-world complex systems. In the last twenty-five

years, there has been a dramatic increase in the quantity and quality of graph-

structured data that is available to researchers. With the advent of large-scale
social networking platforms, massive scientific initiatives to model the interac-
tome, food webs, databases of molecule graph structures, and billions of inter-
connected web-enabled devices, there is no shortage of meaningful graph data

 for researchers to analyze. The challenge is unlocking the potential of this data.

This book is about how we can use machine learning to tackle this challenge.
Of course, machine learning is not the only possible way to analyze graph data.’
However, given the ever-increasing scale and complexity of the graph datasets
that we seek to analyze, it is clear that machine learning will play an important
role in advancing our ability to model, analyze, and understand graph data.

1.1 What is a graph?

Before we discuss machine learning on graphs, it is necessary to give a bit more
formal description of what exactly we mean by “graph data”. Formally, a graph
G = (V,&) is defined by a set of nodes V and a set of edges £ between these
fodes. We denote an edge going from node u € V to node v € V as (u,v) € €.
In—;la.ny cases we will be concerned only with sz'v_n;ril_e__g_r@_}_w, where there is at
most one edge between each pair of nodes, no edges between a node and itself,
and where the edges are all undirected, i.e., (u,v) € £ 4 (v,u) € £.

A convenient way to represent graphs is through an adjacency matriz A €
RVl To represent a graph with an adjacency matrix, we order the nodes
in the graph so that every node indexes a particular row and column in the
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adjacency matrix. We can then represent the presence of edges as entries in this &— S "‘P""— & "'Ofv{«

matrix: Afu,v] = 1if (u,v) € € and Afu,v] = 0 otherwise. If the graph contains
only undirected cdges then A will be a symmetric matrix, but if the graph is
directed (i.e., edge direction matters) then A will not necessarily be symmetric.
Some graphs can also have weighted edges, where the entries in the adjacency
matrix are arbitrary real-values rather than {0,1}. For instance, a weighted
edge in a protein-protein interaction graph might indicated the strength of the
ass@tion between two proteins. '

1.1.1 Multi-relational Graphs

Beyond the distinction between undirected, directed and weighted edges, we
will also consider graphs that have different types of edges. For instance, in
graphs representing drug-drug interactions, we might want different edges to

1The field of network analysis independent of machine learning is the subject of entire
textbooks and will not be covered in detail here [Newman, 2018].
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1.1. WHAT IS A GRAPH? 3

correspond to different side effects that can occur when you take a pair of drugs
at the same time. In these cases we can extend the edge notation to include
an edge or relation type 7, e.g., (u,7,v) € £, and we can define one adjacency
matrix A, per edge type. We call such graphs multi-relational, and the entire
graph can be summarized by an adjacency tensor A € RIVI* R'_X[V', where R is

the set of relations. Two important subsets of multi-relational graphs are often
known as heterogeneous and multiplez graphs.
it

Heter aphs In heterogeneous graphs, nodes are also imbued
with types, meaning that we can partition the set of nodes into disjoint sets
V=VUW,U..UV; where ¥; NV; = 0,Vi # j. Edges in heterogeneous
graphs generally satisty constraints according to the node types, most com-
monly the constraint that certain edges only connect nodes of certain types,
ie., (u,m,v) €& = u € Vj,v € Vi For example, in a heterogeneous biomed-
ical graph, there might be one type of node representing proteins, one type
of representing drugs, and one type representing diseases. Edges representing
“treatments” would only occur between drug nodes and disease nodes. Simi-
larly, edges representing “polypharmacy side-effects” would only occur between
two drug nodes. Multipartite graphs are a well-known special case of hetero-
geneous graphs, where edges can only connect nodes that have different types,
ie, (u,mv) EE—ueEV,, vEVLAT#Ek.

Multiplex graphs In @ graphs we assune that the graph can be
layers.

decomposed in a set of Every node is assumed to belong to every
layer, and each layer corresponids to a unique relation. representing the intra-
layer edge type for that layer. We also assume that inler-layer edges types can
exist, which connect the same node across layers. Multiplex graphs are best
understood via examples. For instance, in a multiplex transportation network,
each node might represent a city and each layer might represent a different mode
of transportation (e.g., air travel or train travel). Intra-layer edges would then
represent cities that are connected by different modes of transportation, while
inter-layer edges represent the possibility of switching n:ndes of transportation
within a particular city.

1.1.2 Feature Information

Lastly, in many cases we also have aflribute or feature information associated
. . ——— . . .
with a graph (e.g., a profile picture associated with a user in a social network).

, where we assume that the ordering of the nodes is con-
the-ordering in the adjacency matrix. In heterogeneous graphs we

generallysume that each different type of node has its own distinct type of &

attributes I Tare caseg/ we will also consider graphs that have real-valued edge
il g )

eafures in addition to discrete edge types, and in some cases we even associate
real-valued features with entire graphs.
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4 CHAPTER 1. INTRODUCTION

Graph or network? We use the term “graph” in this book, but you will
see many other resources use the term “network” to describe the same kind
of data. In some places, we will use both terms (e.g., for social or biological
networks). So which term is correct? In many ways, this terminological
difference is a historical and cultural one: the term @” appears to
be more prevalent in n_laihl_n_e‘r___leam_l‘g_commumty“ but “network” has
historically been popular in the data mining and L&nsmpmsmglﬂggu@;k
science communities. We use both terms mﬂ book, but we also make

istinction between the usage of these terms. We use the term gmph to
dCbClle the abstract data structure that is the focus of this book, we
will also oftén use the term nefwork to describe specific, real-world 1nstan-
tiations of this data structure (e g., social networks)}—Fhis-termihological
distinction is fitting with their current popular usages of these terms. Net-
work analysis is generally concerned with the properties of real-world data,
whereas graph theory is concerned with the theoretical properties of the
mathematical graph abstraction.

*Perhaps in some part due to the terminological clash with “neural networks.”

1.2 Machine learning on graphs

Machine learning is inherently a problem-driven discipline. We seek to build
models that can learn from data in order to solve particular tasks, and machine
learning models are often categorize rding to the type of task they seek
to solver Is 1 apervised task, WhClC the goal is to predict a target output
given an input dat@ﬁm;t an unsupervised task, where the goal is to infer
patterns, such as clusters of points, in the data’

Machine learning with graphs is no different, but the usual categories of
supervised and unsupervised are not necessarily the most informative or useful
when it comes to graphs. In this section we provide a brief overview of the most
important and well-studied machine lcammg tasks on graph data. As we will
see, “supervised” problems are h daka, but machine learning
problems ot graphs often blur the boundaries between the traditional mach_lge
learning categories.

—_—

1.2.1 Node classification

Suppose we are given a large social network dataset with millions of users, but
we know that a significant number of these users are actually bots. Identifying
these bots could be important for many reasons: a company might not want to
advertise to bots or bots may actually be in violation of the social network’s
terms of service. Manually examining every user to determine if they are a bot
would be prohibitively expensive, so ideally we would like to have a model that
could classify users as a bot (or not) given only a of manually
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labeled examples.

This is a classic example of node classification, where the goal is t@
the {abel y,>which could be a type, category, or attribute—associated with all
the nodesu € V, when we are only given the true labels on a training set of nodes
Virain C V. Node classification is periaps the most popular maching learning

ask on graph mmﬁ%mﬁfnode classification
J, eyond social networks include classifying the fita¢tion of proteins in the inter-
actome [Hamilton et al., 2017h] a.m&r‘jdfssifying the topic of documents based on

appli wtiong of

hyperlink or citation graphs [Kipf &nd Welling, 2016a]. Often, we assume that node  elass; ‘Fr‘ A~
we have Tabel mm); only for a very small subset of the nodes in a single v a
graph (e.g., classifying bots in a social nietwork—fromra small set of manually l traia B << m Vv “

labeled examples). However, there are also instances of node classification that
involve many labeled nodes and/or that require genetalization across discon-
nected graphs (e.g., classifying the function of proteins in the interactomes of
different species). T I
L At first glance, node classification appears to be a straightforward variation J R ‘F{'
At of standard supervised classification, but there are in fact important differences. “prrtnct. g"" ~ a
The most important difference is that the es’in a graph are not independent
and identically distributed (i.4.d.). Usually, when we build supervised machine Ctnderd g”‘-PeVU A
learning niodels we assume that each ml evhirg i+ d a Sgquj
all the other datapoints; otherwise, we might need to model the dependencies <3 ?ro\tv’k med gl o
between all our input points. We also assume that the datapoints are identically
distributed; otherwise, we have no way of guaranteeing that our model wi
generalize to new datapoints. Node classification completely breaks this i.i.d.
assumption. Rather than modeling a set of i.i.d. datapoints, we are instead
modeling an interconnected set of nodes. :
‘In fact, the key insight behind many of the most successful node classification
approaches is to explicitly=leverage the connections between nodes. One par-
ticularly popular idea is @exﬁ(mmse tendency for nodes e.f Cocial ney we vie
to share attributes with their neighbors im thie graph [McPherson et al., 2001].  “ ‘
Forammendships with others who share the same
interests or demographics. Based on the notion of homophily we can build ma-
chine learning models that try to assign similar labels to neighboring nodes in
a graph [Zhou et al., 2004]. Beyond homophily there are also concepts such as*
structural equivalence [Donnat et al., 2018], which is the idea that nodes with
sitnilar Iocal neighborhood structures will have similar labels, as well as het- @
efophily, which presumes that nodes will be preferentially connected to nodes
with different labels.2 When we build node classification models we want to

exploit these comicepts and model the relationships between nodes, rather than
simply treating nodes as independent datapoints.

Supervised or semi-supervised? Due to the atypical nature of node
classification, researchers often refer to it as semi-supervised [Yang et al.,
2016]. This terminology is used because when we are training node classi-

T
2For example/ gender /115 an attribute that exhibits heterophily in many social networks.
=
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fication models, we usually have access to the full graph, including all the
unlabeled (e.g., test) nodes. The only thing we are missing is the labels of
test iodes. However, we can still use information about the test nodes (e.g.,
knowledge of their neighborhood in the graph) to improve our model dur-
ing training. This is different fr e usual supervised setting, in which
unlabeled datapoints are completely unobserved during training.

The general term used for models that combine labeled and unlabeled — * «
data “during traning is semi-supervised learning, so it is understandable
that This term is often used in reference to node classification tasks. It is
important to note, however, that standard formulations of semi- supervised
leariing still require the i.i.d. assumption, which does mot hold for node
c]assrﬁcatmn—kfacirmeriem‘ﬁg tasks on graphs do not easily fit our stan-
dard categories!

1:2.2 (:Rmrediction

Node classification is useful for inferring information about a node based on its
relationship with other nodes in the graph. But what about cases where we are
missing this relationship information? What if we know only some of protein-
protein interactions that are present in a given cell, but we want to make a good
guess about the interactions we are missing? Can we use machine learning to
infer the edges between nodes in a graph?

This task goes by many names, such as link prediction, graph completion,
and relational inference, depending on the specific application domaim. We will
simply call it relation prediction here. Along with node classification, it is one
of the more popular machine learning tasks with graph data and has countless
real-world applications: recommending content to users in social platforms [Ying
et al., 2018a], predicting (mm'k et al., 2018], or inferring new
facts in a relatlonmet al., 2013]—all of these tasks can be
viewed as special cases of relation prediction.

The standard setup for relation prediction is that we are given a set of nodes
@nd @ incomplet?set of edges between these nodes Epain € €. Our goal
is to use—thi fal information to infer the missing edges €Y Epain. The
complexity of this task is highly dependent on the type of graph data we are
examining. For instance, in simple graphs, such as social networks that only
encode “friendship” relations, there are simple heuristics based on how many
neighbors two nodes share that can achieve strong performance [Lii and Zhou,
2011]. On the other hand, in more complex multi-relational graph datasets, such
as biomedical knowledge graphs thaf encode hundreds of different biological
interachﬁon can require complex reasoning and inference
strategies [Nickel et al., 2016]. Like node classification, relation prediction blurs
the boundaries of traditional machine learning categories—often being r
to as both supervised and unsupervised—and it requires inductive bifases that
are specific to the graph domain. In addition, like node classification, there are
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many variants of relation prediction, including settings where the predictions
are made over a single, fixed graph [Lii and Zhou, 2011], as well as settings
where relations must be predicted across multiple disjoint graphs [Teru et al.,
2020]. .

1.2.3 Clustering and community detection

Both node classification and relation prediction require inferring missing infor-
mation about graph data, and in many ways, those two tasks are the graph
analogues of supervised learning. Community detection, on the other hand, is
the graph analogue of unsupervised clustering.

Suppose we have access to all the citation information in Google Scholar,
and we make a collaboration graph that connects two researchers if they have
co-authored a paper together. If we were to examine this network, would we
expect to find @Whm everyone is equally likely to collaborate
with everyone else? 1t 15 more likely that the graph would segregate into differ-
ent clusters of nodes, grouped together by research area, institution, or other
demogr@ﬂi—c_ factors. In other words, we would expect this network—Ilike many
real-world networks—to exhibit a community structure, where nodes are much
more likely to form edges with nodes that belong to the same community.

This is the general intuition underlying the task of community detection.
The challenge of community detection is to infer latent community structures
given only the input graph G = (V,£). The many real-world applications of
community detection include uncovering functional modules in genetic interac-
tion networks [Agrawal et al., 2018] and ur@_e@g_&_@a%sofms
in financial transaction networks [Pandit et al., 2007]. AL %

R eadlen ping %)

1.2.4 Graph classification, regression, and clustering

The final class of popular machine learning applications sraph data involve
classification, regression, or clustering problems over utire graphs. For instance,
given a graph representing the structure of a molecule, Wwe might want to build a
regression model that could predict that molecule’s toxicity or soluhility [Gilmer
et al., 2017]. Or, we might want to build a classification model to d: tect whether
a computer program is malicious by analyzing a graph-based re; resentation
of its syntax and data flow [Li et al., 2019]. In these graph classiication or
regression applications, we seek to learn over graph data, but instead fmaking
prédictions over the individual components of a single graph (i.e. 1'1e nodes
or the edges), we are instead given a dataset of multiple different 7. +hs and
our goal is to make independent predictions specific to each grapli iu the
related task of graph clustering, the goal is to learn an unsupervised measure of
similarity between pairs of graphs.

Of all the machine learning tasks on graphs, graph regression and classifi-
cation are perhaps the most straightforward analogues of standard supervised
learning. Each graph is an i.i.d. datapoint associated with a moal
is to use a labeled set of training points to learn a mapping from datapoints
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(i.e., graphs) to labels. In a similar way graph clustering is the straightfor-
ward extension of unsupervised clustering for graph data. The challenge in
these graph-level tasks, iowever, is how to define useful features that take into
account the r'e_lgtiona,l structure within each datapoint.
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