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cooperate  defect

A

Students are thinking if they shall set up their personal WIFI routers which

may increase radio interference and slow down access speed of all.

cooperate

B

public WIFI

public LAN

Room 1 Room 2

3, 7 1, 10

7, 5 5, 8

Dormitory WIFI game (original)

defect

0

1

-1

Payoff of a player i (i=1, 2, ..., N)

-5

Dormitory cleaning game (contributed by W)

at least one other
people cleans all others defect

clean

*Clean also means to clean the trash pack.
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preference collision

Students Houses

The TTC algorithm

(An application of graph theory and game theory)

current assignment

House allocation problem (also occurs in trading)

Suppose there are n students assigned to n single houses but some are not

satisfied with the assignment, i.e., they have different preference of houses.

Q: How to find an "optimal" re-assignment?

Notice there may exist preference collision, thus we need to a "good" mechanism.

preferred

Method 0: full dictatorship (e.g., Shishu-Kan's domitory)

  Assgin without considering students' preference (e.g., random assignment).

  => Fair but the satisfaction is usually not good (not Pareto efficient. E.g., S1 and S2).

Method 1: serial dictatorship (e.g., Shishu-Kan's commons)

  Decide an order and (in that order) let students choose houses one by one.

  (Note: The order can be decided randomly, by seniority, or other priority.)
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Pareto-efficient: no player can get a better state without making some other worse.

Strategy-proof: revealing preferences truthfully is a dominant strategy.

Proof.

Theorem 1. Serial dictatorship is Pareto-efficent and strategy-proof.

Pareto-efficiency: At any time a student can choose the best free house.

Strategy-proof: obvious.

Individually rational: each student gets a house that is at least as good as the initial one.

Clearly Serial dictatorship cannot guarantee individually rationality.

Let us introduce a new algorithm.

Top Trading Cycle (TTC) Algorithm

2012 Nobel Prize in Economics "for the theory of
stable allocations and the practice of market design."

Developed by David Gale'62 and published by Hilbert Scarf & Lloyd Shapley'74.
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Observation (top trading cycle)

current assignment

current assignment

trading (exchange) cyclemost preferred (top)

set all students and all houses "unfixed"

while there exists unfixed students

V = {unfixed students}, H = {unfixed houses}

w(i) = current assigned house of student i, i \in V

v(i) = house of the top (i.e., most preferred) free house of student i, i \in V

Let G = (V, E) be a digraph with E = {(i, v(i) | i \in V)} \cup {(w(i), i) | i \in V}.

Find a (directed) cycle C in G and following that cycle fix students and houses.
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Theorem 2. TTC is Pareto-efficent, strategy-proof and Individually rational.
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initial assignment

1
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3

4
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S6 6

Decide your preference (randomly).

E.g., 3, 5, 1, 6, 2, 4

S1:

S2:

S3:

S4:

S5:

S6:

(Gale, Scarf, and Shapley'74)

Theorem 3. TTC is the only algorithm that is Pareto-efficent, strategy-proof

and Individually rational. (Ma'94)

TTC algorithm exercise

Two questions on the TTC algorithm:

1. Feasibility: Why there can always find a cycle in G?

2. Running time.

TTC algorithm in practice

  In 2012, the New Orleans Recovery School District adopted a school version of TTC.
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Graph: tree

Tree: a connected (undirected) graph with no cycle.

Lemma 1: T = (V, E) is a tree => |E| = |V| - 1.

Proof. By mathematical induction.

Denote |V| and |E| by n and m, respectively.

Step 1: n = 1=> T can be just a single node (with no edge) => OK

Step 2: Assume the lemma is true for any tree with n - 1 nodes.

Step 3: Consider a tree T = (V, E) of n >= 2 nodes.

Since n >= 2, T is connected and has no cycle, there must exist a node v with degree 1.

Remove that v and the only edge incident to v from T, we get a tree T '.

Notice T ' has n-1 nodes and m-1 edges.

Apply the assumption in Step 2 to T ', we have (m-1) = (n-1) - 1. => m = n - 1.
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Suppose we want to prove some proposition.

Step 1: Prove it is true for the case of n = 1.

Step 2: Assume it is true for all cases of n - 1 (or any k < n).

Step 3: Prove it for the case of n.

=> It is true for all natual numbers.

Bad (Wrong) use of mathematical induction.

Suppose we want to prove Lemma 1.

Step 1: For n = 1, it is true. (OK)

Step 2: Assume it is true for all trees T ' with n - 1 nodes. (OK)

Step 3: Appending a node v by an edge to T ' gives us a tree T of n nodes.

Since the number of nodes and the number of edges increase by one respectively,

the lemma has been proved.

Why is it wrong?

Appendix: mathematical induction#36


