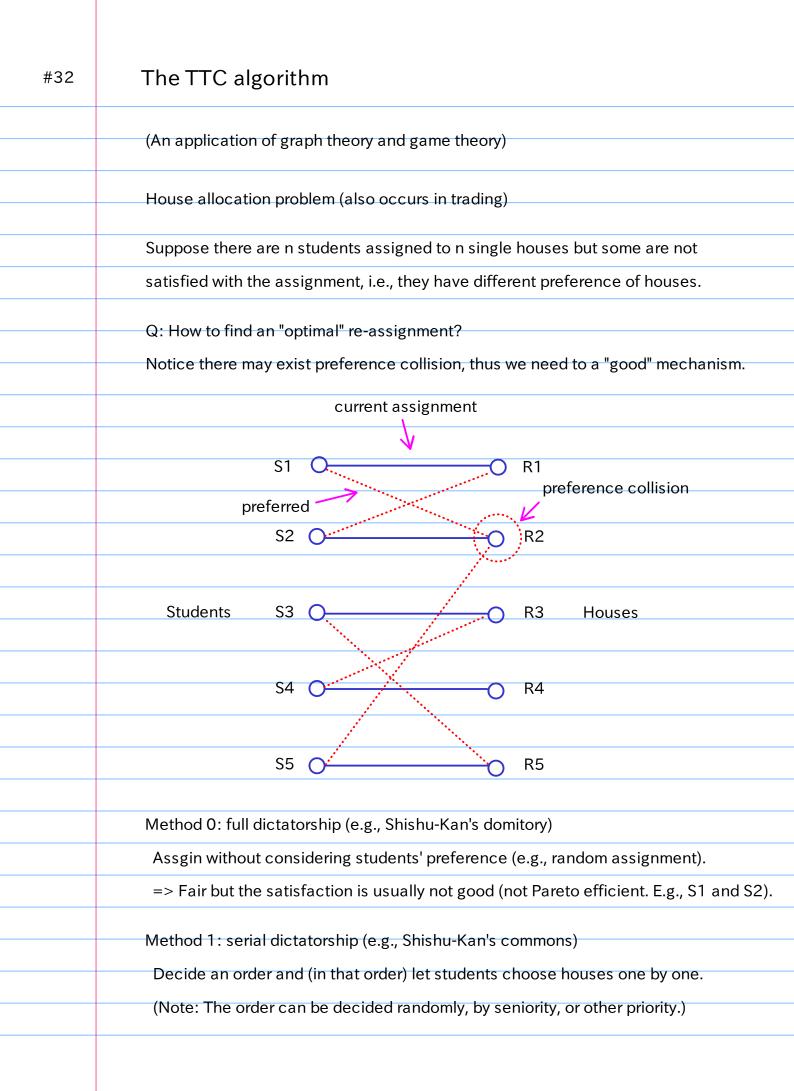
#31	Dormitory WIFI gai	me (original)	public WIFI			
			((•))			
	Room 1	Room	2 •			
			public LAN			
	A	В				
	Students are thinking if they shall set up their personal WIFI routers which					
	may increase radio interference and slow down access speed of all.					
		payoff matrix				
		B cooperate	3 defect			
		2.7	1 10			
	cooperate A	3,7	1,10			
	defect	7,5	5, 8			
	Dormitory cleaning game (contributed by W)					
	F	Payoff of a player i (i=1, 2, .	, N)			
		at least one other people cleans	all others defect			
	clean	0	-1			
	dafaat					
	defect	1	-5			
	*Clean also means to	o clean the trash pack.				



#33				
	Theorem 1. Serial dictatorship is Pareto-efficent and strategy-proof.			
	Pareto-efficient: no player can get a better state without making some other worse.			
	Strategy-proof: revealing preferences truthfully is a dominant strategy.			
	Proof.			
	Pareto-efficiency: At any time a student can choose the best free house.			
	Strategy-proof: obvious.			
	Individually rational: each student gets a house that is at least as good as the initial one.			
	Clearly Serial dictatorship cannot guarantee individually rationality.			
	Let us introduce a new algorithm.			
	2012 Nobel Prize in Economics "for the theory of stable allocations and the practice of market design."			
	Top Trading Cycle (TTC) Algorithm			
	Developed by David Gale'62 and published by Hilbert Scarf & Lloyd Shapley'74.			
	Observation (top trading cycle)			
	S1 Occurrent assignment			
	most preferred (top) trading (exchange) cycle			
	S2 Current assignment R2 S2 C R2 R2 R2			
	set all students and all houses "unfixed"			
	while there exists unfixed students			
	V = {unfixed students}, H = {unfixed houses}			
	w(i) = current assigned house of student i, i ¥in V			
	v(i) = house of the top (i.e., most preferred) free house of student i, i ¥in V			
	Let G = (V, E) be a digraph with E = {(i, v(i) i $i V$ } $i V$ } $i V$, i) i $i V$.			
	Find a (directed) cycle C in G and following that cycle fix students and houses.			
I				

#34						
	TTC algorithm exercise	e				
			Decide your preference (rando	mly).		
	initial ass	ignment	E.g., 3, 5, 1, 6, 2, 4			
	initial ass	agnment	61.			
	S1 ()	0 1	S1:			
	S2 O	<u> </u>	S2:			
	S3 O	<u> </u>	\$3:			
	S4 O	O 4	S4:			
	S5 O	<u> </u>	S5:			
	S6 O	0 6	S6:			
	Two questions on the	TTC algorithm:				
	1. Feasibility: Why there can always find a cycle in G?					
	2. Running time.					
	Theorem 2. TTC is	Pareto-efficent, s	strategy-proof and Individually	rational.		
	(Gale, Scarf, and Sha					
	Theorem 3. TTC is	the only algorith	m that is Pareto-efficent, strate	gy-proof		
		ational. (Ma'94)				
	TTC algorithm in prac					
	In 2012, the New O	rleans Recovery Sch	ool District adopted a school version	of TTC.		

#35	Graph: tree		
	Tree: a connected (undirected) graph with no cycle.		
	Lemma 1: T = (V, E) is a tree => $ E = V - 1$.		
	Proof. By mathematical induction.		
	Denote V and E by n and m, respectively.		
	Step 1: n = 1=> T can be just a single node (with no edge) => OK		
	Step 2: Assume the lemma is true for any tree with n - 1 nodes.		
	Step 3: Consider a tree $T = (V, E)$ of $n \ge 2$ nodes.		
	Since $n \ge 2$, T is connected and has no cycle, there must exist a node v with degree 1.		
	Remove that v and the only edge incident to v from T, we get a tree T '.		
	Notice T'has n-1 nodes and m-1 edges.		
	Apply the assumption in Step 2 to T', we have $(m-1) = (n-1) - 1 = m = n - 1$.		

#36	Appendix: mathematical induction		
	Suppose we want to prove some proposition.		
	Step 1: Prove it is true for the case of $n = 1$.		
	Step 2: Assume it is true for all cases of n - 1 (or any $k < n$).		
	Step 3: Prove it for the case of n.		
	=> It is true for all natual numbers.		
	Bad (Wrong) use of mathematical induction.		
	Suppose we want to prove Lemma 1. Why is it wrong?		
	Step 1: For n = 1, it is true. (OK)		
	Step 2: Assume it is true for all trees T ' with n - 1 nodes. (OK)		
	Step 3: Appending a node v by an edge to T ' gives us a tree T of n nodes.		
	Since the number of nodes and the number of edges increase by one respectively,		
	the lemma has been proved.		