Dynamic Programming

Find the solution of a large instance by finding and efficiently memorizing the solutions of small instances.

Ex.

Finding the n-th Fibonacci number.
Fibonacci numbers: 1123581321 ...
$f(0)=f(1)=1, f(n)=f(n-1)+f(n-2)$, for all $n>=2$.

Python function def fib_DP(n):
$a, b=1,1$
for i in range $(2, n+1)$:
$a, b=b, a+b$
return b
Notice the difference of a recursive call def fib_RC(n):
if $\mathrm{n}<=1$:
return 1
else:
return fib_RC(n-1) + fib_RC(n-2)

Demo: fib.py etc.
(DP)
Ex. $\quad 0-1 \quad$ Knapsack problem

Given n items with size $a_{i}>0$
value $c_{i}>0$
1 container capacity $b>0$
object: pack the items so that the total value is maximized.
formulation

$$
\begin{aligned}
\max & Z=\sum c_{i} x_{i} \\
\text { sit. } & \sum a_{i} x_{i} \leqslant b \\
& x_{i} \in\{0,1\}
\end{aligned}
$$

Here, we assume $a_{i}, b, c_{i} \in \mathbb{Z}$ (integer)

$$
\begin{array}{ll}
\max & 3 x_{1}+4 x_{2}+x_{3}+2 x_{4} \\
5, t \cdot & 2 x_{1}+3 x_{2}+x_{3}+3 x_{4} \leqslant 4 \\
& x_{i}+\{0,1\}
\end{array}
$$

A "simple" yet difficult problem
enumeration method $\Rightarrow O\left(2^{n}\right)$ time.

DP
Let $f(i, k)=\max _{x_{i} \in\{0,1\}} \sum_{j=1}^{i} c_{j} x_{j} \quad i=1,2, \cdots, n$

$$
\sum_{j=1}^{i} a_{j} x_{j} \leqslant k
$$

$$
k=0,1, \cdots, b
$$

Then $f(1, k)= \begin{cases}0 & k<a_{1} \\ c_{1} & k \geqslant a_{1}\end{cases}$
and

$$
f(i, k)=\max \left\{f(i-1, k), \quad f\left(i-1, k-a_{i}\right)+l_{i}\right\}, i \geqslant 2
$$

(assume $f\left(i-1, k-a_{i}\right)=-\infty$ if $k<a_{i}$)
E_{x}.

i	k	1	2	3
1	0	3	3	3
2	0	3	4	4
3	1	3	4	5
4	1	3	4	5

optimal
running time $O(n b)$
better if $b<2^{n}$.

Shortest Path Problem

Input: Graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$, edge length $\mathrm{I}(\mathrm{u}, \mathrm{v})$, s, t Output: a shortest s-t path (or its nonexistence)

Note: it may not exist if there exists a negative cycle.
In the following, we assume there is no such a cycle.

Method 1: find the shortest one from ALL paths
=> Too many paths! (see Movie 1)

Method 2: Pulling method (=> Dijkstra's method)
=> Movie 2

Bellman-Ford algo for the shortest path problem

Define
$f(v, k)=$ length of a shortest $s-v$ path that uses at most k edges
$\Rightarrow \quad$ We want $f(v, n-1)$ for all v.
$f(v, 0)=\left\{\begin{array}{cc}0 & v=s \\ \infty & v \neq s\end{array}\right.$
$f(v, k)=\min \left\{f(v, k-1), \min _{w:(w, v) \in E}\{f(w, k-1)+\ell(w, v)\}\right\}$

Observation

We can safely drop the second parameter in $f(v, k)$, ie., consider

$$
f(v)=\min \left\{f(v), \min _{w:(w, v) \in E}\{f(w)+\ell(w, v)\}\right\} .
$$

\Leftrightarrow Bellman-Ford ago
** Advanced topic (optional)

* Dijkstra's algorithm: 1-1 or 1-many/all
* Bellman-Ford algorithm: 1-all
* Floyd-Warshall: all-all

More efficent than n times of the first two.
Let $\mathrm{V}=\{1,2, \ldots, \mathrm{n}\}$, and we use the incidence matrix.
main

$$
\begin{aligned}
& \text { for } i=1,2, \ldots, n \\
& \quad \text { for } j=1,2, \ldots, n
\end{aligned}
$$

$$
\operatorname{dist}[i, j]=\left\{\begin{array}{cc}
0 & i=j \\
l(i, j) & (i, j) \in E \\
\infty & \text { otherwise }
\end{array}\right.
$$

for $k=1,2, \ldots, n$

$$
\begin{aligned}
& \text { for } i=1,2, \ldots, n \\
& \text { for } j= 1,2, \ldots, n \\
& \text { if } \operatorname{dist}[i, j]>\operatorname{dist}[i, k]+\operatorname{dist}[k, j]\{ \\
& \operatorname{dist}[i, j]=\operatorname{dist}[i, k]+\operatorname{dist}[k, j]
\end{aligned}
$$

Correctness

$f(i, j, k)=$ length of a shortest i-j path that uses only nodes $1, \ldots, k$ $\Rightarrow f(i, j, 0)=\left\{\begin{array}{cc}0 & i=j \\ l(i, j) & (i, j) \in E \\ \infty & \text { otherwise }\end{array}\right.$

$$
f(i, j, k)=\min \{f(i, j, k-1), f(i, k, k-1)+f(k, j, k-1)\}
$$

