
Dynamic ProgrammingDynamic Programming

Ex.

Finding the n-th Fibonacci number.

Fibonacci numbers: 1 1 2 3 5 8 13 21 ...

f(0) = f(1) = 1, f(n) = f(n-1) + f(n-2), for all n>=2.

Python function

def fib_DP(n):
    a, b = 1, 1
    for i in range(2, n+1):
        a, b = b, a+b
    return b

Notice the difference of a recursive call

def fib_RC(n):
    if n<=1:
        return 1
    else:
        return fib_RC(n-1) + fib_RC(n-2)

Demo: fib.py

Find the solution of a large instance by finding and
efficiently memorizing the solutions of small instances.







Shortest Path Problem

Input: Graph G=(V,E),  edge length l(u,v), s, t
Output: a shortest s-t path (or its nonexistence)

Note: it may not exist if there exists a negative cycle.

In the following, we assume there is no such a cycle.

Method 1: find the shortest one from ALL paths

=> Too many paths! (see Movie 1)

Method 2: Pulling method (=> Dijkstra's method)

=> Movie 2



Define

f(v, k) = length of a shortest s-v path that uses at most k edges

f(v, k) = min

�
f(v, k − 1), min

w:(w,v)∈E
{f(w, k − 1) + �(w, v)}

�

f(v) = min

�
f(v), min

w:(w,v)∈E
{f(w) + �(w, v)}

�
.

Bellman-Ford algo

We want f(v, n-1) for all v.

Observation

We can safely drop the second parameter in f(v, k), i.e., consider

Bellman-Ford algo for the shortest path problem



More efficent than n times of the first two.

for k = 1, 2, ..., n
for i = 1, 2, ..., n

for j = 1, 2, ..., n
if dist[i, j] > dist[i, k] + dist[k, j] {

dist[i, j] = dist[i, k] + dist[k, j]
}

time: O(n^3)
space: O(n^2)

* Dijkstra's algorithm: 1-1 or 1-many/all
* Bellman-Ford algorithm: 1-all
* Floyd-Warshall: all-all

f(i, j, k) = length of a shortest i-j path that uses only nodes 1, ..., k

Let V = {1, 2, ..., n}, and we use the incidence matrix.

main

for i = 1, 2, ..., n
for j = 1, 2, ..., n

dist[i, j] =

Correctness

f(i, j, k) = min {f(i, j, k − 1), f(i, k, k − 1) + f(k, j, k − 1)}

** Advanced topic (optional)


