Pareto efficiciency (also Pareto Optimality) #22 Nash Equilibrium (N.E.): a rational optimality Any players can only get worse if he/she changes his/her own strategy. Prisoner's Dilemma В Keep silence Betray P.F (cooperate) (defect) 1 A: 3 years A: 1 year **Keep silence** (cooperate) B: free B: 1year A A: 2 years A: free Betray (defect) B: 2 years B: 3 years N.E. Pareto Efficiency (P.E.): a (relative) global optimality Impossible to make one better off without making at least one another worse off. Two pigs' Game **Big pig** Press button Wait for food -1,9 1, 5 Press button Little pig Wait for food 0,0 4,4 These exampels demonstrate that a rational strategy may and may not be P.E.. We shall realize the difference and try to find a strategy satisfying more criteria.

#23 Life is not always rational

The chicken game demonstrates that human can be irrational in real situations.

Also called the Hawk-Dove Game

		Player B		
		Hawk	Dove	
Plaver A	Hawk	-1000, -1000	1, -1	
	Dove	-1, 1	0, 0	

Chicken game: https://www.youtube.com/watch?v=u7hZ9jKrwvo

Chicken game can be found in politics, economics, biology and others. It (Or, in general, irrational activities of life) can be explained as a result of the nature. More detail can be found from my lecture in the second semester about Information Wisdom Theory (in Japanese now).

#24	Volunteer's dilemma						
	N players need to decide if to make a small sacrifice from which all will benefit.						
	Payoff of a player i (i=1, 2,, N)						
		at least one other people cooperate	all others defect				
	cooperate	0	-1				
	defect	1	-10	Il the police. Woman			
	N = 2 => chicken game.						
	A real (but somewhat misleading) story: murder of Kitty Gerovese in 1964. (See more detail on Wikipedia -> Murder_of_Kitty_Genovese)						
	New York Times reported that neighbors saw or heard murder but didn't call the police.						
	"37 Who Saw Murder Did	In't Call the Police; Apathy	at Stabbing of Queens Wor	man			
	Shocks Inspector" - NYT, March 27, 1964						
	PS. The latest report by NYT in 2016 speaks that the number of witness was not						
	clear and two of the neighbors did call the police.						
				1			
	As a summary, human are not always rational and in many real cases,						
	the (most rational) N.E. strategies were not chosen.						

Four standard auction rules: 1. First-price, Sealed-bid E.g., Goverment, Organization, etc				
1. First-price, Sealed-bid E.g., Goverment, Organization, etc				
E.g., Goverment, Organization, etc				
	Eg. Goverment Organization etc.			
2. Second-price, Sealed-bid (Vickrey auction)	2. Second-price, Sealed-bid (Vickrey auction)			
E.g., online auction (see later discussion)				
3. Open ascending-bid (English auction)	3. Open ascending-bid (English auction) Start with a low price and bidder with the highest price buys (common)			
Start with a low price and bidder with the highest price buys (common)				
4. Open descending-bid (Dutch auction)	4. Open descending-bid (Dutch auction)			
Start with a high price and bidder answers the first buys (for Dutch Tulip)				
Second-price, Sealed-bid (SPSB)				
* Can be back to at least 1893 and 1797.				
* First academically described by William Vickrey in 1961.	* First academically described by William Vickrey in 1961.			
Novel Laureate (1996, Econor	nics Sciences)			
Theorem	Theorem			
In SPSB, bidding with true value is a dominant strategy for each bidder.	In SPSB, bidding with true value is a dominant strategy for each bidder.			
Proof				
Let v_i and b_i be the true value and bidding value w.r.t bidder i.				
Assume all b_i are distinct for simplicity.	Assume all b i are distinct for simplicity.			
The payoff p i of bidder i is thus	The payoff p i of bidder i is thus			
$p_i = \begin{cases} 0, & b_i < \max\{b_j\} \\ \dots & \dots & \dots & \dots \\ p_i = b_i > \max\{b_i\} \end{cases}$				
$\left(\begin{array}{c} v_i = \max_{j \neq i} \{v_j\}, v_i \geq \max_{j \neq j} \{v_j\} \right)$				
$(v_i - \max_{j \neq i} \{v_j\}, v_i \geq \max_{j \neq j} \{v_j\}$	next page)			

(proof continued)

cases	b_i = v_i	b_i > v_i	
$> \max_{j \neq i} \{b_j\}$	$v_i - \max_{j \neq i} \{b_j\} > 0$	$v_i - \max_{j \neq i} \{b_j\} > 0$	
$\leq \max_{\substack{j \neq i}} \{b_j\}$ $< \max_{\substack{j \neq i}} \{b_j\}$	0	0	
$j \le \max_{j \ne i} \{b_j\}$ $j > \max_{j \ne i} \{b_j\}$		$v_i - \max_{j \neq i} \{b_j\} \le 0$	
erefore true bidc ext, compare the	ling is dominant than overb payoff of true bidding and	idding. underbidding.	

e true bidding is dominant than underbidding.

Finally we found true bidding is dominant. This is called "incentive compatibility".

Weakness of SPSB:

Not allow for price discovery; Vulnerable to bidder collusion; Vulnerable to multiple identities; Seller revenues; etc

7 Graph

#27

Complete bipartite graph #28 $K_{m,n}$ where $m = |V_1|, n = |V_2|$ => #edges = mn Path $P=v_1,v_2,\ldots,v_k$ is called a path if $(v_1,v_2),(v_2,v_3),\ldots,(v_{k-1},v_k)\in E$ Uk E.x., a route in a transportation network. Notice a path can be directed or undirected. It is said "simple" if $v_i \neq v_j$ if $i \neq j$. Cycle is a path such that $v_1 = v_k$. It is said "simple" if $v_i \neq v_j$ for any $1 \leq i < j \leq k-1$. cycle but not simple a simple cycle Connectedness A graph is said "connected" if there exists at least one path for each pair of nodes. A digraph is said "strongly-connected" if there exists at least one path for each pair of nodes. It is said "weakly-connected" if it is connected when viewed as undirected. 0 >0 weakly-connected but not strongly strongly-connected (thus also weakly)

degree #29 $o \frac{v}{d(v)} = 5$ Undirected graph $d(v)=\#\{(v,w)\in E\}$ – i.e., #edges incident to node v Directed graph d'(v) = 3out-degree $d^+(v) = \#\{(v,w) \in E\}$ 2/ in-degree $d^{-}(v) = \#\{(w, v) \in E\}$ Lemma 1. For an undirected graph, $\sum_v d(v) = 2m$. Proof. Lemma 2. For a directed graph, $\sum_{v} d^+(v) = \sum_{v} d^-(v) = m$. Proof.

Lemma 3. For an undirected graph, if $d(v) \ge 2$ for all nodes v, then there exists at least one cycle in the graph.

Proof. Choose an arbitrary node v_1. Since $d(v_1) \ge 2$, there exists a node v_2 such that (v_1, v_2) ¥in E. Again, since $d(v_2) \ge 2$, there exists v_3 such that (v_2, v_3) ¥in E. This argument can be repeated to find v_4, Since the number of nodes is finite, there must exist some v_k such that v_k = v_i for some i <k. $=> v_i, v_{i+1}, ..., v_k$ is a cycle.

Lemma 4. For a directed graph, if $d^{+}(v) \ge 1$ for all nodes v, then there exists at least one directed cycle in the graph. The same is true for $d^{-}(v)$.

Proof. => mini report