
#37 On the mini report #5

* Game theory in practice

* Euler Theorem (n + f - m = 2)

Proof

Step 1. It holds for a tree since f = 1 and m = n - 1 as proved in lecture #5.

Step 2. Suppose that it holds for all connected plane graph with k face(s).

Step 3. Consider a connected plane graph with k+1 face(s). Let F be a face of it.

 Remove one edge from F. The new graph G' is still a connected plane graph but

 with k face(s) (why?). Thus, by the assumption of Step 2, n' + f' - m' = 2. Since n'=n,

 f' = f - 1, and m' = m - 1, we have n +f -m = n' + f' - m' = 2. //

1. Turing Machine

Picture credit: https://iq.opengenus.org/general-introduction-to-turing-machine/

2. Random Access Machine (RAM)

https://s3.amazonaws.com/content.udacity-data.com/courses/gt-cs6505/churchturing.html

What is "computation"? (Computation models)

Two factors in designing algorithms

1. How the data are stored

2. How to process those data

Illustration of a toy computer designed by B.W. Kernighan

Data Structures + Algorithms = Programs

N. Wirth 1976 (Turing Award 1984)

#38

Sequence step 1; step 2; ...

Conditional IF ... ELSE ... END

Loop WHILE ... DO ... END

Figure credit: https://xkcd.com/627/

Three fundamental structures of an algorithm

Our daily computer differs from the RAM model mainly by the limited memory.

Inside a computer (10') => https://www.youtube.com/watch?v=ExxFxD4OSZ0

#39

Computational ability (polynomial time or not): Turing machine = RAM

picture: https://www.tasteofhome.com/article/pan-fried-burgers/

�n/2�

�n/2�

Data structure illustrated

Simple stupid algorithm (SSA):

for all steaks s {

cook (both sides of) s and output
}

=> time complexity: 4n

 space complexity: 0

�n/2� : max integer <= n/2

Simple algorithm (SA): an improvement

for i = 1, 2, ..., {

cook two steaks at the same time and output them
}

if n > 2 * { // i.e., n is an odd number

cook the n^th steak and output it
}

=> time complexity: 2n for an even n and 2n+2 for an odd n

 space complexity: 0

Cooking hamburger steaks

* We want to cook some steaks using one frying pan.

* Cooking each side of a steak takes two minutes.

* Each time at most two steaks can be cooked.

=> How long does it take to cook n steaks?

#40

�n/2�
Clever algorithm (CA): (use an additional plate)

if i = 1 or n = 2 * {

Apply SA to cook all steaks
}

else {

Apply SA to cook n-3 steaks

 Exercise

}

=> time complexity: 4 for n=1; 2n otherwise (optimal. Why?)

 space complexity: 1 for odd n>=3; 0 otherwise

Machine scheduling

makespan

time

machine
n = 3, SA

n = 3, CA

Cooking example

Each time at most two steaks can be cooked => two machines M1, M2

n steaks with two sides => Jobs: (two sides of steak 1) J1, J2, (steak 2) J3, J4, ...

Cooking each side takes two minutes. => Processing time = 2 minutes for all jobs.

Constraint: Jobs J_{2i-1} and J_{2i} cannot be processed at the same time for all i.

e.g., n = 2

#41

#42

n = |V |, m = |E|

incidence matrix

Pro: easy

Con: inefficient for
 sparse graph

Pro: compact

Con: complicate

Exercise

incidence matrix

adjacent lists

adjacent lists

Data representation for graphs

