
k

h'h

.

.

.

p

k

k k

H -> min

front and back
of the k^th steak

1

2

1 1 2 2 n n... ...

...

Let H = max{2,
�2n
p

�
}

H H <= H

#44

On the mini report #6

Q: Suppose we have a frying pan that can cook at most p steaks at the
same time and it takes T time to cook one side of a steak. What is the
optimal (i.e., minimizing the ending time) way to cook n steaks?

Observation:

How to find a minimum H such that no white and black blocks of the
same number stay in the same level? A simple idea is to arrange
white and black blocks of the same number side by side serially.

h(k) �= h�(k) for all k = 1, 2, . . . , n

constraint:

It can be seen that layout in HT time is possible and it is optimal
(notice that HT is a lower bound on the makespan).

n = |V |, m = |E|

incidence matrix

Pro: easy

Con: inefficient for
 sparse graph

Pro: compact

Con: complicate

adjacent lists

#45 graph data representation (review)

Depth first search (DFS)

solve the maze = find a path from the start to the goal

https://en.wikipedia.org/wiki/Hedge_maze

time: O(m+n)
space: O(m+n)

DFS (Depth-First Search)

INPUT: G=(V,E) given by adjacent lists, nodes s and t
OUTPUT: an s,t-path (or its nonexistence)

main
parent[s] = s
parent[v] = -1 for all v <> s
DFS(s)

DFS(v)
for all neighbors w of v {

if parent[w] == -1 {
parent[w] = v
DFS(w)

}
}

#46

adjacent lists

A - S
B - C - D - S
C - B
D - B - E - F - H
E - D
F - D
G - K
H - D - I - K
I - H
J - K
K - G - H - J
S - A - B

The next algorithm was stated by Charles Pierre Tremaux

 (1858-1882), called Tremaux's algorithm in robot motion.

Demo (exercise)

A B C D E F G H I J K S
Parent
DFS(v)

Q. How to output the s-t path?

Remark: graph can be arbitrary; t = none => search all nodes

#47

x

y

2

1

How to denote it?

In general (in n-dimensional space)

a1x1 + a2x2 + · · ·+ anxn = b

a1x1 + a2x2 + · · ·+ anxn ≥ b

a1x1 + a2x2 + · · ·+ anxn ≤ b

is an n-1dimension space called a hyperplane.

Half spaces separated by the hyperplane.

Mathematical Programming

min{f(x)|x ∈ Ω ⊆ Rn}

...

xi ≥ 0 i = 1, 2, . . . , n

c1x1 + c2x2 + · · ·+ cnxn → max

a11x1 + a12x2 + · · ·+ a1nxn ≤ b1

a21x1 + a22x2 + · · ·+ a2nxn ≤ b2

am1x1 + am2x2 + · · ·+ amnxn ≤ bm

subject to (s.t.)

Note: min{ f } = max{ -f }, thus
min or max is only technical.

Straight line, hyperplane, and half space

x ∈ Ω ⊆ Rn

* f: object function

* x: (decision) variable

* constraint(s):

Ex. Linear Programming (LP), the standard formulation

#48

c1x1 + c2x2 + · · ·+ cnxn = c
a11x1 + a12x2 ≤ b1

a21x1 + a22x2 ≤ b2

contoursx2

x1

x = (xi) ∈ Rn = Rn×1

A = (aij) ∈ Rm×n

LP on plane (n=2)

Notations

* vector:

* matrix:

On Mini Report: Taro's problem

#49

Use "var x1 binary;" to specify x1 is either 0 or 1, etc.

Solve LP (or IP, Integer Programming) problems

Simplex, Interior point, etc., but usually we use a solver.

e.g.,

https://online-optimizer.appspot.com/ -> default model

