
var x1 binary;
var x2 binary;
var x3 binary;
var x4 binary;
var x5 binary;
var x6 binary;
var x7 binary;
var x8 binary;
var x9 binary;

minimize cost: 86 * x1 + 64 * x2 + 86 * x3 + 43 * x4 + 86 * x5 + 86 * x6 + 108 * x7 + 216 * x8 + 248 * x9;

subject to
 c1: 0.1 * x1 + 1.1 * x2 + 0.2 * x3 + 0.2 * x4 + 1.2 * x5 + 0.2 * x6 + 0.3 * x7 + 1.8 * x8 + 2.0 * x9 >= 2.0;
 c2: 0.2 * x1 + 0 * x2 + 0.6 * x3 + 0.1 * x4 + 0.2 * x5 + 0 * x6 + 0 * x7 + 0.1 * x8 + 0.1 * x9 >= 1.0;
 c3: 2.0 * x1 + 1.0 * x2 + 2.4 * x3 + 0.1 * x4 + 2.1 * x5 + 4.0 * x6 + 5.0 * x7 + 2.8 * x8 + 3.5 * x9 >= 7;
 c4: 2.0 * x1 + 1.0 * x2 + 2.4 * x3 + 0.1 * x4 + 2.1 * x5 + 4.0 * x6 + 5.0 * x7 + 2.8 * x8 + 3.5 * x9 <= 10;
 c5: 0.1 * x1 + 0.2 * x2 + 0.1 * x3 + 1.5 * x4 + 0.3 * x5 + 0 * x6 + 0 * x7 + 1.0 * x8 + 1.6 * x9 <= 2.5;

Mini report 6: Taro's problem#50

Notation: c · x = cTx = c1x1 + c2x2 + · · ·+ cnxn

=> Taro's problem: min cTx

rTx ≥ 2.0
gTx ≥ 1.0
bTx ≥ 7
bTx ≤ 10
sTx ≤ 2.5
x ∈ {0, 1}9

subject to

x = (x1, x2, x3, x4, x5, x6, x7, x8, x9)
T ∈ {0, 1}9

c = (86, 64, 86, 43, 86, 86, 108, 216, 248)T ∈ R9

r = (0.1, 1.1., 0.2, 0.2, 1.2, 0.2, 0.3, 1.8, 2.0)T ∈ R9

g = (0.2, 0, 0.6, 0.1, 0.2, 0, 0, 0.1, 0.1)T ∈ R9

b = (2.0, 1, 0, 2.4, 0.1, 2.1, 4.0, 5.0, 2.8, 3.5)T ∈ R9

s = (0.1, 0.2, 0.1, 1.5, 0.3, 0, 0, 1.0, 1.6)T ∈ R9

Notation of vectors, where the superscript T shows the transpose (row <-> column).

Notations: b = (2.0, 1.0, 7,−10,−2.5)T ∈ R5

A = (r, g, b,−b,−s)T ∈ R5×9

min cTx=> Taro's problem:

subject to Ax ≥ b
x ∈ {0, 1}9



Mini report 6: Taro's problem#50

# Model specification

param m;
param n;
param c{1..n};
param b{1..m};
param A{1..m, 1..n};

var x{1..n} binary;

minimize cost:
    sum{i in 1..n}c[i] * x[i];

subject to constraint {i in 1..m}:
    sum{j in 1..n} A[i,j] * x[j] >= b[i];

# Data specification

data;

param n := 9;
param m := 5;

param c :=
    1 86
    2 64
    3 86
    4 43
    5 86
    6 86
    7 108
    8 216
    9 248 ;

param b :=
    1 2.0
    2 1.0
    3 7.0
    4 -10
    5 -2.5 ;

param A : 1 2 3 4 5 6 7 8 9 :=
    1   0.1  1.1  0.2  0.2  1.2  0.2  0.3  1.8  2.0
    2   0.2  0.0  0.6  0.1  0.2  0.0  0.0  0.1  0.1
    3   2.0  1.0  2.4  0.1  2.1  4.0  5.0  2.8  3.5
    4  -2.0 -1.0 -2.4 -0.1 -2.1 -4.0 -5.0 -2.8 -3.5
    5  -0.1 -0.2 -0.1 -1.5 -0.3 -0.0 -0.0 -1.0 -1.6 ;

end;



A standard form of LP

(P) 

Dual problem

(D) 

Theorem (Weakly duality theorem)

For any x and y that are feasible to (P) and (D) respectively,

Q: Under what condition can the equality hold?

Complementary
      slackness

#51 * Linear Programming (LP) and its dual problem



Corollary:

For any x and y feasible to (P) and (D) respectively, they are

optimal solutions if cTx = bT y.

cTx∗ = bT y∗.

Illustration of LP and the simplex method for LP

https://en.wikipedia.org/wiki/Linear_programming

"A pictorial representation of a simple
linear program with two variables and
six inequalities. The set of feasible
solutions is depicted in yellow and
forms a polygon, a 2-dimensional
polytope. The linear cost function is
represented by the red line and the
arrow: The red line is a level set of the
cost function, and the arrow indicates
the direction in which we are optimizing."

Simplex method: Start from some vertex; Find a descending neighbor vertex

(for minimization problem); Repeat until no such a vertex can be found.

#52

Theorem (Strong duality theorem)

If (P) (or (D)) has an optimal solution x* (or y*), then (D) (or (P))

 has a feasible (optimal) solution y* such that

* Illustration of the (weakly) duality theorem



Start from some interior point;

Find a descending direction and a
interior point along that direction;

Repeat until no such a direction
(point) can be found.

Advantage: Gradient descent or even Newton's method can be used.

Transform to the standard formulation

#53
* Interior-point method



Integer Programming

In generl, the problem becomes much difficult when limited to integer solutions.

Suppose we start from (1,1). We know the descending direction

but we cannot find a feasible neighbor vertex from (1,1).

* In general, IP is NP-hard whereas LP is P-hard.

* P-hard problems can be solved in polynomial time (of the input size),

  NP-hard problems are considered not (however, it has not been proved).

#54



Whether P = NP is the biggest unsolved problem in CS.

P vs NP
#55

* Decision problems are those problems with answers YES or NO.

* P problems can be solved in polynomial time w.r.t. the input size.

  Ex1: Given a graph and two nodes s and t, is there a path connects s and t?

  Ex2: Decide if a given graph is an Euler graph.

  Ex3: Decide if an LP problem has a solution with objective value <= a given threshold.

* NP problems are those problems for which we can verify if a given solution is

  feasible in polynomial time w.r.t. the input size.

  Ex1: P problems belong to NP class.

  Ex2: Decide if a given graph is a Hamilton graph (i.e., there exists a cycle that
           visits all nodes exactly once).

  Ex3: Decide if an IP problem has a solution with objective value <= a given threshold.

* P-hard or NP-hard problem is the optimization version of a P or an NP decision problem.

* NP-hard problems can be solved by binary search if its decision problem can be solved.

Petersen graphhttps://www.geeksforgeeks.org/mathematics-euler-hamiltonian-paths/


