

e
Bernard
Bernard

 $^{#51}$ \parallel * Linear Programming (LP) and its dual problem A standard form of LP (P) $max_{x, c \in \mathbb{R}^n, b \in \mathbb{R}^m, A \in \mathbb{R}^n}$ Dual problem (D) Theorem (Weakly duality theorem) For any x and y that are feasible to (P) and (D) respectively, $C^{T}x \leq b^{T}y$ $Provf.$ $CT_{\mathcal{I}} = \mathcal{X} \subset \leq \mathcal{Z}^T \mathcal{A}^T \mathcal{Y} = (\mathcal{A}\mathbf{x})^T \mathcal{Y}$ $=$ $4^{7}(4x)$ \leq $4^{7}b$ = $6^{7}4$ $\overline{\mathscr{U}}$ Q: Under what condition can the equality hold? A: $2^Tc = 2^T A y$
 \Leftrightarrow $\begin{cases} 2^Tc = 2^T A y \Leftrightarrow y \Lef$ (P)
 $\frac{f(x)}{\sqrt{\frac{f(x)}{f(x)}(f(y), -f_i)=0}}$
 $\frac{f(x)}{\sqrt{\frac{f(x)}{f(x)}(f(x), -f_i)=0}}$
 $\frac{f(x)}{\sqrt{\frac{f(x)}{f(x)}(f(x), -f_i)}=0}$

Complementary

slackness **Complementary**

#52 * Illustration of the (weakly) duality theorem Y_1 γ_{1h}

Corollary:

For any x and y feasible to (P) and (D) respectively, they are

optimal solutions if $c^T x = b^T y$.

Theorem (Strong duality theorem)

If (P) (or (D)) has an optimal solution x^* (or y^*), then (D) (or (P))

has a feasible (optimal) solution y* such that $c^T x^* = b^T y^*.$

Illustration of LP and the simplex method for LP

"A pictorial representation of a simple linear program with two variables and six inequalities. The set of feasible solutions is depicted in yellow and forms a polygon, a 2-dimensional polytope. The linear cost function is represented by the red line and the arrow: The red line is a level set of the cost function, and the arrow indicates the direction in which we are optimizing."

max Problem

https://en.wikipedia.org/wiki/Linear_programming

Simplex method: Start from some vertex; Find a descending neighbor vertex

(for minimization problem); Repeat until no such a vertex can be found.

Vertex: basic schations of some linear equations.

#53 * Interior-point methodStart from some interior point; Find a descending direction and a interior point along that direction; Repeat until no such a direction (point) can be found. Advantage: Gradient descent or even Newton's method can be used. Transform to the standard formulation (1) m_{10}^{T} $\left(\frac{1}{2}\right)$ m_{0} $\left(\frac{1}{2}\right)^{T}$ X $\frac{1}{2}$ α^{\top} $\alpha \neq 0$ \Rightarrow $\alpha \neq 0$ \Rightarrow $\alpha \neq 0$ $\frac{7}{2}$ $\frac{7}{2}$ $\frac{7}{2}$ $\frac{7}{2}$ $\frac{7}{2}$ $\frac{7}{2}$ $\frac{7}{2}$ \iff $(-a)^{\overline{1}}x \leq (-b)$ and $a^{\overline{1}}x \leq b$ e.g. $Ax = b$ \iff $Ax \le b$ and $(A)_{x \le (-b)}$ $A \in IR$
 $x \in IR$
 $x \in IR$ \Leftrightarrow $\begin{pmatrix} A \\ X \end{pmatrix}$ $X \leq \begin{pmatrix} b \\ b \end{pmatrix}$ $h \in \mathbb{R}^m$ $=A^{\prime}+R^{2m\times n} = b^{\prime}+R^{2m}$

