
9.2. ADVERSARIAL APPROACHES 115

or we consider a small set of heuristic orderings π1, ..., πn and average over
these orderings:

pθ(G|zG) ≈
∑

πi∈{π1,...,πn}

∏
(u,v)∈V

Ãπi [u, v]A[u, v]+(1−Ãπi [u, v])(1−A[u, v]).

These heuristic orderings do not solve the graph matching problem, but
they seem to work well in practice. Liao et al. [2019a] provides a detailed
discussion and comparison of these heuristic ordering approaches, as well
as an interpretation of this strategy as a variational approximation.

Limitations

As with the node-level VAE approach, the basic graph-level framework has se-
rious limitations. Most prominently, using graph-level latent representations
introduces the issue of specifying node orderings, as discussed above. This
issue—together with the use of MLP decoders—currently limits the application
of the basic graph-level VAE to small graphs with hundreds of nodes or less.
However, the graph-level VAE framework can be combined with more effective
decoders—including some of the autoregressive methods we discuss in Section
9.3—which can lead to stronger models. We will mention one prominent exam-
ple of such as approach in Section 9.5, when we highlight the specific task of
generating molecule graph structures.

9.2 Adversarial Approaches

Variational autoencoders (VAEs) are a popular framework for deep generative
models—not just for graphs, but for images, text, and a wide-variety of data
domains. VAEs have a well-defined probabilistic motivation, and there are many
works that leverage and analyze the structure of the latent spaces learned by
VAE models. However, VAEs are also known to suffer from serious limitations—
such as the tendency for VAEs to produce blurry outputs in the image domain.
Many recent state-of-the-art generative models leverage alternative generative
frameworks, with generative adversarial networks (GANs) being one of the most
popular [Goodfellow et al., 2014].

The basic idea behind a general GAN-based generative models is as follows.
First, we define a trainable generator network gθ : Rd → X . This generator
network is trained to generate realistic (but fake) data samples x̃ ∈ X by taking
a random seed z ∈ Rd as input (e.g., a sample from a normal distribution).
At the same time, we define a discriminator network dφ : X → [0, 1]. The
goal of the discriminator is to distinguish between real data samples x ∈ X
and samples generated by the generator x̃ ∈ X . Here, we will assume that
discriminator outputs the probability that a given input is fake.

To train a GAN, both the generator and discriminator are optimized jointly
in an adversarial game:

min
θ

max
φ

Ex∼pdata(x)[log(1− dφ(x))] + Ez∼pseed(z)[log(dφ(gθ(z))], (9.10)

random seed Generator Discriminator

Sample from dataset
Generated graph

Backward

Disparity between generated
and sample graphs

idea: use another neural
network to generate
pseudo labels

Zuo Zhenyu
Pencil

Zuo Zhenyu
Pencil

Zuo Zhenyu
Pencil

Zuo Zhenyu
Pencil

Zuo Zhenyu
Highlight

Zuo Zhenyu
Highlight

116 CHAPTER 9. DEEP GENERATIVE MODELS

where pdata(x) denotes the empirical distribution of real data samples (e.g.,
a uniform sample over a training set) and pseed(z) denotes the random seed
distribution (e.g., a standard multivariate normal distribution). Equation (9.10)
represents a minimax optimization problem. The generator is attempting to
minimize the discriminatory power of the discriminator, while the discriminator
is attempting to maximize its ability to detect fake samples. The optimization of
the GAN minimax objective—as well as more recent variations—is challenging,
but there is a wealth of literature emerging on this subject [Brock et al., 2018,
Heusel et al., 2017, Mescheder et al., 2018].

A basic GAN approach to graph generation

In the context of graph generation, a GAN-based approach was first employed
in concurrent work by Bojchevski et al. [2018] and De Cao and Kipf [2018]. The
basic approach proposed by De Cao and Kipf [2018]—which we focus on here—is
similar to the graph-level VAE discussed in the previous section. For instance,
for the generator, we can employ a simple multi-layer perceptron (MLP) to
generate a matrix of edge probabilities given a seed vector z:

Ã = σ (MLP(z)) , (9.11)

Given this matrix of edge probabilities, we can then generate a discrete adja-
cency matrix Â ∈ Z|V|×|V| by sampling independent Bernoulli variables for each
edge, with probabilities given by the entries of Ã; i.e., Â[u, v] ∼ Bernoulli(Ã[u, v]).
For the discriminator, we can employ any GNN-based graph classification model.
The generator model and the discriminator model can then be trained according
to Equation (9.10) using standard tools for GAN optimization.

Benefits and limitations of the GAN approach

As with the VAE approaches, the GAN framework for graph generation can be
extended in various ways. More powerful generator models can be employed—
for instance, leveraging the autoregressive techniques discussed in the next
section—and one can even incorporate node features into the generator and
discriminator models [De Cao and Kipf, 2018].

One important benefit of the GAN-based framework is that it removes the
complication of specifying a node ordering in the loss computation. As long as
the discriminator model is permutation invariant—which is the case for almost
every GNN—then the GAN approach does not require any node ordering to
be specified. The ordering of the adjacency matrix generated by the generator
is immaterial if the discriminator is permutation invariant. However, despite
this important benefit, GAN-based approaches to graph generation have so far
received less attention and success than their variational counterparts. This is
likely due to the difficulties involved in the minimax optimization that GAN-
based approaches require, and investigating the limits of GAN-based graph gen-
eration is currently an open problem.

Major limitation:
Hard to train

Read Wasserstein GAN
(Arjovsky, 2017)
for more on why GANs
are hard to trian

We can use a GNN as
discriminator, thus we don't
need to care about node
ordering

Zuo Zhenyu
Highlight

Zuo Zhenyu
Highlight

Zuo Zhenyu
Highlight

9.3. AUTOREGRESSIVE METHODS 117

9.3 Autoregressive Methods

The previous two sections detailed how the ideas of variational autoencoding
(VAEs) and generative adversarial networks (GANs) can be applied to graph
generation. However, both the basic GAN and VAE-based approaches that we
discussed used simple multi-layer perceptrons (MLPs) to generate adjacency
matrices. In this section, we will introduce more sophisticated autoregressive
methods that can decode graph structures from latent representations. The
methods that we introduce in this section can be combined with the GAN and
VAE frameworks that we introduced previously, but they can also be trained as
standalone generative models.

9.3.1 Modeling Edge Dependencies

The simple generative models discussed in the previous sections assumed that
edges were generated independently. From a probabilistic perspective, we de-
fined the likelihood of a graph given a latent representation z by decomposing
the overall likelihood into a set of independent edge likelihoods as follows:

P (G|z) =
∏

(u,v)∈V2

P (A[u, v]|z). (9.12)

Assuming independence between edges is convenient, as it simplifies the likeli-
hood model and allows for efficient computations. However, it is a strong and
limiting assumption, since real-world graphs exhibit many complex dependen-
cies between edges. For example, the tendency for real-world graphs to have high
clustering coefficients is difficult to capture in an edge-independent model. To
alleviate this issue—while still maintaining tractability—autoregressive model
relax the assumption of edge independence.

Instead, in the autoregressive approach, we assume that edges are generated
sequentially and that the likelihood of each edge can be conditioned on the edges
that have been previously generated. To make this idea precise, we will use L
to denote the lower-triangular portion of the adjacency matrix A. Assuming we
are working with simple graphs, A and L contain exactly the same information,
but it will be convenient to work with L in the following equations. We will then
use the notation L[v1, :] to denote the row of L corresponding to node v1, and we
will assume that the rows of L are indexed by nodes v1, ..., v|V|. Note that due to
the lower-triangular nature of L, we will have that L[vi, vj] = 0, ∀j > i, meaning
that we only need to be concerned with generating the first i entries for any
row L[vi, :]; the rest can simply be padded with zeros. Given this notation, the
autoregressive approach amounts to the following decomposition of the overall
graph likelihood:

P (G|z) =

|V|∏
i=1

P (L[vi, :]|L[v1, :], ...,L[vi−1, :], z). (9.13)

In other words, when we generate row L[vi, :], we condition on all the previous
generated rows L[vj , :] with j < i.

"autoregressive" refers to a
type of model that predicts
future values based on past
values of the same sequence.

Autoregressive models are
good at modeling graphs that
are inherently constructed in
some order.

Example: road network, SNS
network. These networks
are built in a step-by-step
fashion (roads are built one by
one, and SNS users only
follow/unfollow one user
at a time)

By looking a graph as node
and edge sequences, we can
address this problem using
NLP methods.

Graphs that are not suitable
to be modeled by autoregressive
models:
molecules,
knowledge graph

Zuo Zhenyu
Highlight

Zuo Zhenyu
Highlight

Zuo Zhenyu
Highlight

118 CHAPTER 9. DEEP GENERATIVE MODELS

9.3.2 Recurrent Models for Graph Generation

We will now discuss two concrete instantiations of the autoregressive generation
idea. These two approaches build upon ideas first proposed in Li et al. [2018]
and are generally indicative of the strategies that one could employ for this
task. In the first model we will review—called GraphRNN [You et al., 2018]—we
model autoregressive dependencies using a recurrent neural network (RNN). In
the second approach—called graph recurrent attention network (GRAN) [Liao
et al., 2019a]—we generate graphs by using a GNN to condition on the adjacency
matrix that has been generated so far.

GraphRNN

The first model to employ this autoregressive generation approach was GraphRNN
[You et al., 2018]. The basic idea in the GraphRNN approach is to use a hier-
archical RNN to model the edge dependencies in Equation (9.13).

The first RNN in the hierarchical model—termed the graph-level RNN—is
used to model the state of the graph that has been generated so far. Formally,
the graph-level RNN maintains a hidden state hi, which is updated after gen-
erating each row of the adjacency matrix L[vi, :]:

hi+1 = RNNgraph(hi,L[vi, L]), (9.14)

where we use RNNgraph to denote a generic RNN state update with hi cor-
responding to the hidden state and L[vi, L] to the observation.2 In You et al.
[2018]’s original formulation, a fixed initial hidden state h0 = 0 is used to initial-
ize the graph-level RNN, but in principle this initial hidden state could also be
learned by a graph encoder model or sampled from a latent space in a VAE-style
approach.

The second RNN—termed the node-level RNN or RNNnode—generates the
entries of L[vi, :] in an autoregressive manner. RNNnode takes the graph-level
hidden state hi as an initial input and then sequentially generates the binary
values of L[vi, ;], assuming a conditional Bernoulli distribution for each entry.
The overall GraphRNN approach is called hierarchical because the node-level
RNN is initialized at each time-step with the current hidden state of the graph-
level RNN.

Both the graph-level RNNgraph and the node-level RNNnode can be opti-
mized to maximize the likelihood the training graphs (Equation 9.13) using the
teaching forcing strategy [Williams and Zipser, 1989], meaning that the ground
truth values of L are always used to update the RNNs during training. To
control the size of the generated graphs, the RNNs are also trained to output
end-of-sequence tokens, which are used to specify the end of the generation pro-
cess. Note that—as with the graph-level VAE approaches discussed in Section
9.1—computing the likelihood in Equation (9.13) requires that we assume a
particular ordering over the generated nodes.

2You et al. [2018] use GRU-style RNNs but in principle LSTMs or other RNN architecture
could be employed.

When generating nodes as
eq. 9.13, we implicitly assume
a node ordering

Zuo Zhenyu
Highlight

Zuo Zhenyu
Highlight

Zuo Zhenyu
Highlight

Zuo Zhenyu
Highlight

Zuo Zhenyu
Highlight

9.3. AUTOREGRESSIVE METHODS 119

Figure 9.2: Illustration of the GRAN generation approach [Liao et al., 2019a].

After training to maximize the likelihood of the training graphs (Equation
9.13), the GraphRNN model can be used to generate graphs at test time by
simply running the hierarchical RNN starting from the fixed, initial hidden
state h0. Since the edge-level RNN involves a stochastic sampling process to
generate the discrete edges, the GraphRNN model is able to generate diverse
samples of graphs even when a fixed initial embedding is used. However—
as mentioned above—the GraphRNN model could, in principle, be used as a
decoder or generator within a VAE or GAN framework, respectively.

Graph Recurrent Attention Networks (GRAN)

The key benefit of the GraphRNN approach—discussed above—is that it mod-
els dependencies between edges. Using an autoregressive modeling assumption
(Equation 9.13), GraphRNN can condition the generation of edges at generation
step i based on the state of the graph that has already been generated during
generation steps 1, ...i − 1. Conditioning in this way makes it much easier to
generate complex motifs and regular graph structures, such as grids. For ex-
ample, in Figure 9.3, we can see that GraphRNN is more capable of generating
grid-like structures, compared to the basic graph-level VAE (Section 9.1). How-
ever, the GraphRNN approach still has serious limitations. As we can see in
Figure 9.3, the GraphRNN model still generates unrealistic artifacts (e.g., long
chains) when trained on samples of grids. Moreover, GraphRNN can be difficult
to train and scale to large graphs due to the need to backpropagate through
many steps of RNN recurrence.

To address some of the limitations of the GraphRNN approach, Liao et al.
[2019a] proposed the GRAN model. GRAN—which stands for graph recurrent
attention networks—maintains the autoregressive decomposition of the gener-
ation process. However, instead of using RNNs to model the autoregressive
generation process, GRAN uses GNNs. The key idea in GRAN is that we
can model the conditional distribution of each row of the adjacency matrix by
running a GNN on the graph that has been generated so far (Figure 9.2):

P (L[vi, :]|L[v1, :], ...,L[vi−1, :], z) ≈ GNN(L[v1 : vi−1, :], X̃). (9.15)

GRNN GRAN difference:
how the intermeidate state is
stored.
GRNN - a vector
GRAN - the current graph itself

Zuo Zhenyu
Highlight

Zuo Zhenyu
Highlight

120 CHAPTER 9. DEEP GENERATIVE MODELS

Here, we use L[v1 : vi−1, :] to denote the lower-triangular adjacency matrix of the
graph that has been generated up to generation step i. The GNN in Equation
(9.15) can be instantiated in many ways, but the crucial requirement is that
it generates a vector of edge probabilities L[vi, :], from which we can sample
discrete edge realizations during generation. For example, Liao et al. [2019a]
use a variation of the graph attention network (GAT) model (see Chapter 5) to
define this GNN. Finally, since there are no node attributes associated with the
generated nodes, the input feature matrix X̃ to the GNN can simply contain
randomly sampled vectors (which are useful to distinguish between nodes).

The GRAN model can be trained in an analogous manner as GraphRNN
by maximizing the likelihood of training graphs (Equation 9.13) using teacher
forcing. Like the GraphRNN model, we must also specify an ordering over nodes
to compute the likelihood on training graphs, and Liao et al. [2019a] provides a
detailed discussion on this challenge. Lastly, like the GraphRNN model, we can
use GRAN as a generative model after training simply by running the stochastic
generation process (e.g., from a fixed initial state), but this model could also be
integrated into VAE or GAN-based frameworks.

The key benefit of the GRAN model—compared to GraphRNN—is that it
does not need to maintain a long and complex history in a graph-level RNN.
Instead, the GRAN model explicitly conditions on the already generated graph
using a GNN at each generation step. Liao et al. [2019a] also provide a de-
tailed discussion on how the GRAN model can be optimized to facilitate the
generation of large graphs with hundreds of thousands of nodes. For example,
one key performance improvement is the idea that multiple nodes can be added
simultaneously in a single block, rather than adding nodes one at a time. This
idea is illustrated in Figure 9.2.

9.4 Evaluating Graph Generation

The previous three sections introduced a series of increasingly sophisticated
graph generation approaches, based on VAEs, GANs, and autoregressive mod-
els. As we introduced these approaches, we hinted at the superiority of some
approaches over others. We also provided some examples of generated graphs
in Figure 9.3, which hint at the varying capabilities of the different approaches.
However, how do we actually quantitatively compare these different models?
How can we say that one graph generation approach is better than another?
Evaluating generative models is a challenging task, as there is no natural notion
of accuracy or error. For example, we could compare reconstruction losses or
model likelihoods on held out graphs, but this is complicated by the lack of a
uniform likelihood definition across different generation approaches.

In the case of general graph generation, the current practice is to analyze
different statistics of the generated graphs, and to compare the distribution of
statistics for the generated graphs to a test set [Liao et al., 2019a]. Formally,
assume we have set of graph statistics S = (s1, s2, ..., sn), where each of these
statistics si,G : R → [0, 1] is assumed to define a univariate distribution over R

This book was wrote before
diffusion methods
become popular.

Diffusion methods can also be
used on graph generation
see
https://arxiv.org/abs/2302.02591
https://arxiv.org/abs/2401.15617

Statistics-based evaluation is
easy to implement
But often not enough to really
tell the graph quality

Zuo Zhenyu
Highlight

Zuo Zhenyu
Highlight

Zuo Zhenyu
Highlight

9.5. MOLECULE GENERATION 121

Figure 9.3: Examples of graphs generated by a basic graph-level VAE (Section
9.1), as well as the GraphRNN and GRAN models. Each row corresponds to
a different dataset. The first column shows an example of a real graph from
the dataset, while the other columns are randomly selected samples of graphs
generated by the corresponding model [Liao et al., 2019a].

for a given graph G. For example, for a given graph G, we can compute the degree
distribution, the distribution of clustering coefficients, and the distribution of
different motifs or graphlets. Given a particular statistic si—computed on both
a test graph si,Gtest and a generated graph si,Ggen—we can compute the distance
between the statistic’s distribution on the test graph and generated graph using
a distributional measure, such as the total variation distance:

d(si,Gtest , si,Ggen) = sup
x∈R
|si,Gtest(x)− si,Ggen(x)|. (9.16)

To get measure of performance, we can compute the average pairwise distribu-
tional distance between a set of generated graphs and graphs in a test set.

Existing works have used this strategy with graph statistics such as degree
distributions, graphlet counts, and spectral features, with distributional dis-
tances computed using variants of the total variation score and the first Wasser-
stein distance [Liao et al., 2019b, You et al., 2018].

9.5 Molecule Generation

All the graph generation approaches we introduced so far are useful for gen-
eral graph generation. The previous sections did not assume a particular data
domain, and our goal was simply to generate realistic graph structures (i.e.,

We do not have a universially good
criteria for graph generation.

We need:
domain-specific knowledge
or synthesisd datasets.

Unlike image and text generation,
which can be easily evaluated by
human, telling if a graph is good
or not is hard.

To address real world problems
with graph generation, we need
to find a good criteria before we
can do anything.

122 CHAPTER 9. DEEP GENERATIVE MODELS

adjacency matrices) based on a given training set of graphs. It is worth not-
ing, however, that many works within the general area of graph generation are
focused specifically on the task of molecule generation.

The goal of molecule generation is to generate molecular graph structures
that are both valid (e.g., chemically stable) and ideally have some desirable
properties (e.g., medicinal properties or solubility). Unlike the general graph
generation problem, research on molecule generation can benefit substantially
from domain-specific knowledge for both model design and evaluation strategies.
For example, Jin et al. [2018] propose an advanced variant of the graph-level
VAE approach (Section 9.1) that leverages knowledge about known molecular
motifs. Given the strong dependence on domain-specific knowledge and the
unique challenges of molecule generation compared to general graphs, we will
not review these approaches in detail here. Nonetheless, it is important to
highlight this domain as one of the fastest growing subareas of graph generation.

Molecule generation
The biggest challenge:
Hard to evaluate.

Zuo Zhenyu
Highlight

Conclusion

This book provides a brief (and necessarily incomplete) tour of graph repre-
sentation learning. Indeed, even as I am writing, there are new and important
works arising in this area, and I expect a proper overview of graph representa-
tion learning will never be truly complete for many years to come. My hope is
that these chapters provide a sufficient foundation and overview for those who
are interested in becoming practitioners of these techniques or those who are
seeking to explore new methodological frontiers of this area.

My intent is also for these chapters to provide a snapshot of graph represen-
tation learning as it stands in what I believe to be a pivotal moment for this
nascent area. Recent years have witnessed the formalization of graph repre-
sentation learning into a genuine and recognizable sub-field within the machine
learning community. Spurred by the increased research attention on this topic,
graph neural networks (GNNs) have now become a relatively standard tech-
nique; there are now dozens of deep generative models of graphs; and, our theo-
retical understanding of these techniques is solidifying at a rapid pace. However,
with this solidification also comes a risk for stagnation, as certain methodologies
become ingrained and the focus of research becomes increasingly narrow.

To this end, I will close this book with a brief discussion of two key areas for
future work. These are not certainly not the only important areas for inquiry
in this field, but they are two areas that I believe hold promise for pushing the
fundamentals of graph representation learning forward.

Latent graph inference

By and large, the techniques introduced in this book assume that a graph struc-
ture is given as an input. The challenge of graph representation learning—as
I have presented it—is how to embed or represent such a given input graph
in an effective way. However, an equally important and complimentary chal-
lenge is the task of inferring graphs or relational structure from unstructured
or (semi-structured) inputs. This task goes by many names, but I will call it
latent graph inference here. Latent graph inference is a fundamental challenge
for graph representation learning, primarily because it could allow us to use
GNN-like methods even when no input graph is given. From a technical stand-
point, this research direction could potentially build upon the graph generation
tools introduced in Part III of this book.

123

Knowledge graph for LLMs
Multimodal sensing...
Reasoning
etc.

Zuo Zhenyu
Highlight

Zuo Zhenyu
Highlight

124 Conclusion

Already, there have been promising initial works in this area, such as the
Neural Relational Inference (NRI) model proposed by Kipf et al. [2018] and
the nearest-neighbor graphs inferred by Wang et al. [2019]. Perhaps the most
exciting fact about this research direction is that preliminary findings suggest
that latent graph inference might improve model performance even when we
have an input graph. In my view, building models that can infer latent graph
structures beyond the input graph that we are given is a critical direction for
pushing forward graph representation learning, which could also open countless
new application domains.

Breaking the bottleneck of message passing

Perhaps the single largest topic in this book—in terms of amount of space
dedicated—is the neural message passing approach, first introduced in Chap-
ter 5. This message passing formalism—where nodes aggregate messages from
neighbors and then update their representations in an iterative fashion—is at
the heart of current GNNs and has become the dominant paradigm in graph
representation learning.

However, the neural message passing paradigm also has serious drawbacks.
As we discussed in Chapter 7, the power of message-passing GNNs are inher-
ently bounded by the Weisfeiler-Lehman (WL) isomorphism test. Moreover,
we know that these message-passing GNNs are theoretically related to rela-
tively simple convolutional filters, which can be formed by polynomials of the
(normalized) adjacency matrix. Empirically, researchers have continually found
message-passing GNNs to suffer from the problem of over-smoothing, and this
issue of over-smoothing can be viewed as a consequence of the neighborhood
aggregation operation, which is at the core of current GNNs. Indeed, at their
core message-passing GNNs are inherently limited by the aggregate and update
message-passing paradigm. This paradigm induces theoretical connections to
the WL isomorphism test as well as to simple graph convolutions, but it also
induces bounds on the power of these GNNs based on these theoretical con-
structs. At a more intuitive level, we can see that the aggregate and update
message-passing structure of GNNs inherently induces a tree-structured compu-
tation (see, e.g., Figure 5.1). The embedding of each node in a GNN depends on
iterative aggregations of neighborhood information, which can be represented
as a tree-structured computation graph rooted at that node. Noting that GNNs
are restricted to tree-structured computation graph provides yet another view of
their limitations, such as their inability to consistently identify cycles and their
inability to capture long-range dependencies between the nodes in a graph.

I believe that the core limitations of message-passing GNNs—i.e., being
bounded by the WL test, being limited to simple convolutional filters, and be-
ing restricted to tree-structured computation graphs—are all, in fact, different
facets of a common underlying cause. To push graph representation learning
forward, it will be necessary to understand the deeper connections between these
theoretical views, and we will need to find new architectures and paradigms that
can break these theoretical bottlenecks.

Whether we need more
expressive power than
WL-test

Check the specific domain
you are working and see
what information is needed

Sometiems a tree-structured
computation graph is more
than needed.

But in other cases, try adding
richer features such as ring
indicators, degree indicators,
etc.

Zuo Zhenyu
Highlight

Zuo Zhenyu
Highlight

Bibliography

M. Agrawal, M. Zitnik, J. Leskovec, et al. Large-scale analysis of disease path-
ways in the human interactome. In PSB, pages 111–122, 2018.

A. Ahmed, N. Shervashidze, S. Narayanamurthy, V. Josifovski, and A.J. Smola.
Distributed large-scale natural graph factorization. In WWW, 2013.

R. Albert and L. Barabási. Statistical mechanics of complex networks. Rev.
Mod. Phys, 74(1):47, 2002.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization.
arXiv preprint arXiv:1607.06450, 2016.

L. Babai and L. Kucera. Canonical labelling of graphs in linear average time.
In FOCS. IEEE, 1979.

D. Bahdanau, K. Cho, and Y. Bengio. Neural machine translation by jointly
learning to align and translate. In ICLR, 2015.

P. Barceló, E. Kostylev, M. Monet, J. Pérez, J. Reutter, and J. Silva. The
logical expressiveness of graph neural networks. In ICLR, 2020.

P. Battaglia et al. Relational inductive biases, deep learning, and graph net-
works. arXiv preprint arXiv:1806.01261, 2018.

M. Belkin and P. Niyogi. Laplacian eigenmaps and spectral techniques for
embedding and clustering. In NeurIPS, 2002.

F. Bianchi, D. Grattarola, C. Alippi, and L. Livi. Graph neural networks with
convolutional ARMA filters. arXiv preprint arXiv:1901.01343, 2019.

A. Bojchevski, O. Shchur, D. Zügner, and S. Günnemann. NetGan: Generating
graphs via random walks. 2018.

A. Bordes, N. Usunier, A. Garcia-Duran, J. Weston, and O. Yakhnenko. Trans-
lating embeddings for modeling multi-relational data. In NeurIPS, 2013.

K. Borgwardt and H. Kriegel. Shortest-path kernels on graphs. In ICDM, 2005.

A. Brock, J. Donahue, and K. Simonyan. Large scale GAN training for high
fidelity natural image synthesis. In ICLR, 2018.

125

126 BIBLIOGRAPHY

J. Bruna, W. Zaremba, and Y. Szlam, A.and LeCun. Spectral networks and
locally connected networks on graphs. In ICLR, 2014.

C. Cangea, P. Veličković, N. Jovanović, T. Kipf, and P. Liò. Towards sparse
hierarchical graph classifiers. arXiv preprint arXiv:1811.01287, 2018.

S. Cao, W. Lu, and Q. Xu. GraRep: Learning graph representations with global
structural information. In KDD, 2015.

J. Chen, J. Zhu, and L. Song. Stochastic training of graph convolutional net-
works with variance reduction. In ICML, 2018.

K. Cho, B. Van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares,
H. Schwenk, and Y. Bengio. Learning phrase representations using RNN
encoder-decoder for statistical machine translation. In EMNLP, 2014.

A. Clauset, C. Shalizi, and M.E.J. Newman. Power-law distributions in empir-
ical data. SIAM Rev., 51(4):661–703, 2009.

H. Dai, B. Dai, and L. Song. Discriminative embeddings of latent variable
models for structured data. In ICML, 2016.

N. De Cao and T. Kipf. MolGAN: An implicit generative model for small
molecular graphs. arXiv preprint arXiv:1805.11973, 2018.

M. Defferrard, X. Bresson, and P. Vandergheynst. Convolutional neural net-
works on graphs with fast localized spectral filtering. In NeurIPS, 2016.

J. Devlin, M. Chang, K. Lee, and K. Toutanova. BERT: Pre-training of deep
bidirectional transformers for language understanding. In NAACL-HLT, 2018.

C. Donnat, M. Zitnik, D. Hallac, and J. Leskovec. Graph wavelets for structural
role similarity in complex networks. In KDD, 2018.

J. Elman. Finding structure in time. Cog. Sci., 14(2):179–211, 1990.

P. Erdös and A. Rényi. On the evolution of random graphs. Publ. Math. Inst.
Hung. Acad. Sci, 5(1):17–60, 1960.

H. Gao and S. Ji. Graph u-nets. In ICML, 2019.

J. Gilmer, S. Schoenholz, P. Riley, O. Vinyals, and G. Dahl. Neural message
passing for quantum chemistry. In ICML, 2017.

I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,
A. Courville, and Y. Bengio. Generative adversarial nets. In NeurIPS, 2014.

I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. MIT press, 2016.

L. Grafakos. Classical and modern Fourier analysis. Prentice Hall, 2004.

BIBLIOGRAPHY 127

A. Grover and J. Leskovec. node2vec: Scalable feature learning for networks.
In KDD, 2016.

A. Grover, A. Zweig, and S. Ermon. Graphite: Iterative generative modeling of
graphs. In ICML, 2019.

W. Hamilton, R. Ying, and J. Leskovec. Representation learning on graphs:
Methods and applications. IEEE Data Eng. Bull., 2017a.

W.L. Hamilton, R. Ying, and J. Leskovec. Inductive representation learning on
large graphs. In NeurIPS, 2017b.

K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recogni-
tion. In CVPR, 2016.

M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler, and S. Hochreiter. GANs
trained by a two time-scale update rule converge to a local Nash equilibrium.
In NeurIPS, 2017.

S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural Comput.,
9(8):1735–1780, 1997.

P. Hoff, A.E. Raftery, and M.S. Handcock. Latent space approaches to social
network analysis. JASA, 97(460):1090–1098, 2002.

S. Hoory, N. Linial, and A. Wigderson. Expander graphs and their applications.
Bull. Am. Math. Soc, 43(4):439–561, 2006.

W. Hu, B. Liu, J. Gomes, M. Zitnik, P. Liang, V. Pande, and J. Leskovec.
Strategies for pre-training graph neural networks. 2019.

Matthew O Jackson. Social and economic networks. Princeton university press,
2010.

G. Ji, S. He, L. Xu, K. Liu, and J. Zhao. Knowledge graph embedding via
dynamic mapping matrix. In ACL, 2015.

W. Jin, R. Barzilay, and T. Jaakkola. Junction tree variational autoencoder for
molecular graph generation. In ICML, 2018.

H. Kashima, K. Tsuda, and A. Inokuchi. Marginalized kernels between labeled
graphs. In ICML, 2003.

Y. Katznelson. An Introduction to Harmonic Analysis. Cambridge University
Press, 2004.

D. Kingma and M. Welling. Auto-encoding variational Bayes. arXiv preprint
arXiv:1312.6114, 2013.

T. Kipf, E. Fetaya, K. Wang, M. Welling, and R. Zemel. Neural relational
inference for interacting systems. In ICML, 2018.

128 BIBLIOGRAPHY

T.N. Kipf and M. Welling. Semi-supervised classification with graph convolu-
tional networks. In ICLR, 2016a.

T.N. Kipf and M. Welling. Variational graph auto-encoders. In NeurIPS Work-
shop on Bayesian Deep Learning, 2016b.

J. Klicpera, A. Bojchevski, and S. Günnemann. Predict then propagate: Graph
neural networks meet personalized PageRank. In ICLR, 2019.

N. Kriege, F. Johansson, and C. Morris. A survey on graph kernels. Appl. Netw.
Sci., 5(1):1–42, 2020.

J.B. Kruskal. Multidimensional scaling by optimizing goodness of fit to a non-
metric hypothesis. Psychometrika, 29(1):1–27, 1964.

E. Leicht, P. Holme, and M.E.J Newman. Vertex similarity in networks. Phys.
Rev. E, 73(2):026120, 2006.

J. Leskovec, A Rajaraman, and J. Ullman. Mining of Massive Data Sets. Cam-
bridge University Press, 2020.

R. Levie, F. Monti, X. Bresson, and M. Bronstein. Cayleynets: Graph convo-
lutional neural networks with complex rational spectral filters. IEEE Trans.
Signal Process, 67(1):97–109, 2018.

Y. Li, D. Tarlow, M. Brockschmidt, and R. Zemel. Gated graph sequence neural
networks. In ICLR, 2015.

Y. Li, O. Vinyals, C. Dyer, R. Pascanu, and P. Battaglia. Learning deep gener-
ative models of graphs. In ICML, 2018.

Y. Li, C. Gu, T. Dullien, O. Vinyals, and P. Kohli. Graph matching networks
for learning the similarity of graph structured objects. In ICML, 2019.

R. Liao, Y. Li, Y. Song, S. Wang, W.L. Hamilton, D. Duvenaud, R. Urtasun, and
R. Zemel. Efficient graph generation with graph recurrent attention networks.
In NeurIPS, 2019a.

R. Liao, Z. Zhao, R. Urtasun, and R. Zemel. LanczosNet: Multi-scale deep
graph convolutional networks. In ICLR, 2019b.

L. Lü and T. Zhou. Link prediction in complex networks: A survey. Physica A,
390(6):1150–1170, 2011.

D. Marcheggiani and I. Titov. Encoding sentences with graph convolutional
networks for semantic role labeling. In EMNLP, 2017.

H. Maron, H. Ben-Hamu, H. Serviansky, and Y. Lipman. Provably powerful
graph networks. In NeurIPS, 2019.

J. Mason and D. Handscomb. Chebyshev Polynomials. Chapman and Hall,
2002.

BIBLIOGRAPHY 129

M. McPherson, L. Smith-Lovin, and J. Cook. Birds of a feather: Homophily in
social networks. Annu. Rev. Sociol, 27(1):415–444, 2001.

C. Merkwirth and T. Lengauer. Automatic generation of complementary de-
scriptors with molecular graph networks. J. Chem. Inf. Model, 45(5):1159–
1168, 2005.

L. Mescheder, A. Geiger, and S. Nowozin. Which training methods for GANs
do actually converge? In ICML, 2018.

C.D. Meyer. Matrix analysis and applied linear algebra, volume 71. SIAM, 2000.

C. Morris, M. Ritzert, M. Fey, W.L. Hamilton, J. Lenssen, G. Rattan, and
M. Grohe. Weisfeiler and Leman go neural: Higher-order graph neural net-
works. In AAAI, 2019.

R. Murphy, B. Srinivasan, V. Rao, and B. Ribeiro. Janossy pooling: Learning
deep permutation-invariant functions for variable-size inputs. In ICLR, 2018.

R. Murphy, B. Srinivasan, V. Rao, and B. Ribeiro. Relational pooling for graph
representations. In ICML, 2019.

M. Newman. Mathematics of networks. The New Palgrave Dictionary of Eco-
nomics, pages 1–8, 2016.

M. Newman. Networks. Oxford University Press, 2018.

D. Nguyen, K. Sirts, L. Qu, and M. Johnson. STranse: A novel embed-
ding model of entities and relationships in knowledge bases. arXiv preprint
arXiv:1606.08140, 2016.

M. Nickel, V. Tresp, and H. Kriegel. A three-way model for collective learning
on multi-relational data. In ICML, 2011.

M. Nickel, K. Murphy, V. Tresp, and E. Gabrilovich. A review of relational
machine learning for knowledge graphs. Proc. IEEE, 104(1):11–33, 2016.

A. Oppenheim, R. Schafer, and J. Buck. Discrete-time signal processing. Pren-
tice Hall, 1999.

A. Ortega, P. Frossard, J. Kovačević, J. Moura, and P. Vandergheynst. Graph
signal processing: Overview, challenges, and applications. Proc. IEEE, 106
(5):808–828, 2018.

M. Ou, P. Cui, J. Pei, Z. Zhang, and W. Zhu. Asymmetric transitivity preserving
graph embedding. In KDD, 2016.

J. Padgett and C. Ansell. Robust action and the rise of the medici, 1400-1434.
Am. J. Sociol., 98(6):1259–1319, 1993.

L. Page, S. Brin, R. Motwani, and T. Winograd. The PageRank citation ranking:
Bringing order to the web. Technical report, Stanford InfoLab, 1999.

130 BIBLIOGRAPHY

S. Pandit, D. Chau, S. Wang, and C. Faloutsos. NetProbe: A fast and scalable
system for fraud detection in online auction networks. In WWW, 2007.

B. Perozzi, R. Al-Rfou, and S. Skiena. Deepwalk: Online learning of social
representations. In KDD, 2014.

B. Perozzi, V. Kulkarni, and S. Skiena. Walklets: Multiscale graph embeddings
for interpretable network classification. arXiv preprint arXiv:1605.02115,
2016.

T. Pham, T. Tran, D. Phung, and S. Venkatesh. Column networks for collective
classification. In AAAI, 2017.

C.R. Qi, H. Su, K. Mo, and L.J. Guibas. Pointnet: Deep learning on point sets
for 3d classification and segmentation. In CVPR, 2017.

J. Qiu, Y. Dong, H. Ma, J. Li, K. Wang, and J. Tang. Network embedding as
matrix factorization: Unifying deepwalk, line, pte, and node2vec. In KDD,
2018.

M. Qu, Y. Bengio, and J. Tang. GMNN: Graph markov neural networks. In
ICML, 2019.

L. Rabiner and B. Gold. Theory and application of digital signal processing.
Prentice-Hall, 1975.

L.F.R. Ribeiro, P.H.P. Saverese, and D.R. Figueiredo. struc2vec: Learning node
representations from structural identity. In KDD, 2017.

H. Robbins and S. Monro. A stochastic approximation method. Ann. Math.
Stat, pages 400–407, 1951.

D. Rumelhart, G. Hinton, and R. Williams. Learning representations by back-
propagating errors. Nature, 323(6088):533–536, 1986.

F. Scarselli, M. Gori, A.C. Tsoi, M. Hagenbuchner, and G. Monfardini. The
graph neural network model. IEEE Trans. Neural Netw. Learn. Syst, 20(1):
61–80, 2009.

M. Schlichtkrull, T.N. Kipf, P. Bloem, R. van den Berg, I. Titov, and M. Welling.
Modeling relational data with graph convolutional networks. In European
Semantic Web Conference, 2017.

D. Selsam, M. Lamm, B. Bünz, P. Liang, L. de Moura, and D. Dill. Learning a
SAT solver from single-bit supervision. In ICLR, 2019.

N. Shervashidze and K. Borgwardt. Fast subtree kernels on graphs. In NeurIPS,
2009.

N. Shervashidze, P. Schweitzer, E. Leeuwen, K. Mehlhorn, and K. Borgwardt.
Weisfeiler-lehman graph kernels. JMLR, 12:2539–2561, 2011.

BIBLIOGRAPHY 131

M. Simonovsky and N. Komodakis. GraphVAE: Towards generation of small
graphs using variational autoencoders. In International Conference on Arti-
ficial Neural Networks, 2018.

K. Sinha, S. Sodhani, J. Dong, J. Pineau, and W. Hamilton. CLUTRR: A
diagnostic benchmark for inductive reasoning from text. In EMNLP, 2019.

A. Smola, A. Gretton, L. Song, and B. Schölkopf. A Hilbert space embedding
for distributions. In COLT, 2007.

N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov.
Dropout: a simple way to prevent neural networks from overfitting. JMLR,
15(1):1929–1958, 2014.

M. Stoer and F. Wagner. A simple min-cut algorithm. J. ACM, 44(4):585–591,
1997.

F. Sun, J. Hoffmann, and J. Tang. Infograph: Unsupervised and semi-supervised
graph-level representation learning via mutual information maximization. In
ICLR, 2020.

Z. Sun, Z. Deng, J. Nie, and J. Tang. RotatE: Knowledge graph embedding by
relational rotation in complex space. In ICLR, 2019.

J. Tang, M. Qu, M. Wang, M. Zhang, J. Yan, and Q. Mei. LINE: Large-scale
information network embedding. In WWW, 2015.

K. Teru, E. Denis, and W.L. Hamilton. Inductive relation prediction on knowl-
edge graphs. In ICML, 2020.

T. Trouillon, J. Welbl, S. Riedel, É. Gaussier, and G. Bouchard. Complex
embeddings for simple link prediction. In ICML, 2016.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. Gomez, L. Kaiser,
and I. Polosukhin. Attention is all you need. In NeurIPS, 2017.

P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Lio, and Y. Bengio.
Graph attention networks. In ICLR, 2018.

P. Veličković, W. Fedus, W.L. Hamilton, P. Liò, Y. Bengio, and R.D. Hjelm.
Deep graph infomax. In ICLR, 2019.

O. Vinyals, S. Bengio, and M. Kudlur. Order matters: Sequence to sequence
for sets. In ICLR, 2015.

S.V.N. Vishwanathan, N.N. Schraudolph, R. Kondor, and K.M. Borgwardt.
Graph kernels. JMLR, 11:1201–1242, 2010.

U. Von Luxburg. A tutorial on spectral clustering. Stat. Comput., 17(4):395–
416, 2007.

132 BIBLIOGRAPHY

M. Wainwright and M. Jordan. Graphical models, exponential families, and
variational inference. Found. Trends Mach. Learn., 1(1–2):1–305, 2008.

Y. Wang, Y. Sun, Z. Liu, S. Sarma, M. Bronstein, and J. Solomon. Dynamic
graph CNN for learning on point clouds. ACM TOG, 38(5):1–12, 2019.

Z. Wang, J Zhang, J. Feng, and Z. Chen. Knowledge graph embedding by
translating on hyperplanes. In AAAI, 2014.

Duncan J Watts and Steven H Strogatz. Collective dynamics of ‘small-
world’networks. Nature, 393(6684):440–442, 1998.

B. Weisfeiler and A. Lehman. A reduction of a graph to a canonical form and an
algebra arising during this reduction. Nauchno-Technicheskaya Informatsia,
2(9):12–16, 1968.

R. Williams and D. Zipser. A learning algorithm for continually running fully
recurrent neural networks. Neural Comput., 1(2):270–280, 1989.

F. Wu, T. Zhang, C. Souza, A.and Fifty, T. Yu, and K. Weinberger. Simplifying
graph convolutional networks. In ICML, 2019.

K. Xu, C. Li, Y. Tian, T. Sonobe, K. Kawarabayashi, and S. Jegelka. Repre-
sentation learning on graphs with jumping knowledge networks. In ICML,
2018.

K. Xu, W. Hu, J. Leskovec, and S. Jegelka. How powerful are graph neural
networks? In ICLR, 2019.

B. Yang, W. Yih, X. He, J. Gao, and L. Deng. Embedding entities and relations
for learning and inference in knowledge bases. In ICLR.

Z. Yang, W. Cohen, and R. Salakhutdinov. Revisiting semi-supervised learning
with graph embeddings. In ICML, 2016.

Z. Yang, Z. Dai, Y. Yang, J. Carbonell, R. Salakhutdinov, and Q. Le. XL-
net: Generalized autoregressive pretraining for language understanding. In
NeurIPS, 2019.

R. Ying, R. He, K. Chen, P. Eksombatchai, W.L. Hamilton, and J. Leskovec.
Graph convolutional neural networks for web-scale recommender systems. In
KDD, 2018a.

R. Ying, J. You, C. Morris, X. Ren, W. Hamilton, and J. Leskovec. Hierarchical
graph representation learning with differentiable pooling. In NeurIPS, 2018b.

J. You, R. Ying, X. Ren, W.L. Hamilton, and J. Leskovec. GraphRNN: Gener-
ating realistic graphs with deep auto-regressive models. In ICML, 2018.

W. Zachary. An information flow model for conflict and fission in small groups.
J. Anthropol. Res., 33(4):452–473, 1977.

BIBLIOGRAPHY 133

M. Zaheer, S. Kottur, S. Ravanbakhsh, B. Poczos, R. Salakhutdinov, and
A. Smola. Deep sets. In NeurIPS, 2017.

Y. Zhang, X. Chen, Y. Yang, A. Ramamurthy, B. Li, Y. Qi, and L. Song. Can
graph neural networks help logic reasoning? In ICLR, 2020.

D. Zhou, O. Bousquet, T. Lal, J. Weston, and B. Schölkopf. Learning with local
and global consistency. In NeurIPS, 2004.

M. Zitnik, M. Agrawal, and J. Leskovec. Modeling polypharmacy side effects
with graph convolutional networks. Bioinformatics, 34(13):i457–i466, 2018.

	Preface
	Acknowledgments
	Introduction
	What is a graph?
	Multi-relational Graphs
	Feature Information

	Machine learning on graphs
	Node classification
	Relation prediction
	Clustering and community detection
	Graph classification, regression, and clustering

	Background and Traditional Approaches
	Graph Statistics and Kernel Methods
	Node-level statistics and features
	Graph-level features and graph kernels

	Neighborhood Overlap Detection
	Local overlap measures
	Global overlap measures

	Graph Laplacians and Spectral Methods
	Graph Laplacians
	Graph Cuts and Clustering
	Generalized spectral clustering

	Towards Learned Representations

	I Node Embeddings
	Neighborhood Reconstruction Methods
	An Encoder-Decoder Perspective
	The Encoder
	The Decoder
	Optimizing an Encoder-Decoder Model
	Overview of the Encoder-Decoder Approach

	Factorization-based approaches
	Random walk embeddings
	Random walk methods and matrix factorization

	Limitations of Shallow Embeddings

	Multi-relational Data and Knowledge Graphs
	Reconstructing multi-relational data
	Loss functions
	Multi-relational decoders
	Representational abilities

	II Graph Neural Networks
	The Graph Neural Network Model
	Neural Message Passing
	Overview of the Message Passing Framework
	Motivations and Intuitions
	The Basic GNN
	Message Passing with Self-loops

	Generalized Neighborhood Aggregation
	Neighborhood Normalization
	Set Aggregators
	Neighborhood Attention

	Generalized Update Methods
	Concatenation and Skip-Connections
	Gated Updates
	Jumping Knowledge Connections

	Edge Features and Multi-relational GNNs
	Relational Graph Neural Networks
	Attention and Feature Concatenation

	Graph Pooling
	Generalized Message Passing

	Graph Neural Networks in Practice
	Applications and Loss Functions
	GNNs for Node Classification
	GNNs for Graph Classification
	GNNs for Relation Prediction
	Pre-training GNNs

	Efficiency Concerns and Node Sampling
	Graph-level Implementations
	Subsampling and Mini-Batching

	Parameter Sharing and Regularization

	Theoretical Motivations
	GNNs and Graph Convolutions
	Convolutions and the Fourier Transform
	From Time Signals to Graph Signals
	Spectral Graph Convolutions
	Convolution-Inspired GNNs

	GNNs and Probabilistic Graphical Models
	Hilbert Space Embeddings of Distributions
	Graphs as Graphical Models
	Embedding mean-field inference
	GNNs and PGMs More Generally

	GNNs and Graph Isomorphism
	Graph Isomorphism
	Graph Isomorphism and Representational Capacity
	The Weisfieler-Lehman Algorithm
	GNNs and the WL Algorithm
	Beyond the WL Algorithm

	III Generative Graph Models
	Traditional Graph Generation Approaches
	Overview of Traditional Approaches
	Erdös-Rényi Model
	Stochastic Block Models
	Preferential Attachment
	Traditional Applications

	Deep Generative Models
	Variational Autoencoder Approaches
	Node-level Latents
	Graph-level Latents

	Adversarial Approaches
	Autoregressive Methods
	Modeling Edge Dependencies
	Recurrent Models for Graph Generation

	Evaluating Graph Generation
	Molecule Generation

	Conclusion
	Bibliography

