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40 3 Common probability distributions

Figure 3.5 The univariate normal dis-
tribution is defined on x ∈ R and has
two parameters {µ, σ2}. The mean
parameter µ determines the expected
value and the variance σ2 determines
the concentration about the mean so
that as σ2 increases, the distribution
becomes wider and flatter.
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3.5 Univariate normal distribution

The univariate normal or Gaussian distribution (figure 3.5) is defined on continuous
values x ∈ [−∞,∞]. In vision, it is common to ignore the fact that the intensity
of a pixel is quantized and model it with the continuous normal distribution. The
world state may also be described by the normal distribution. For example, the
distance to an object could be represented in this way.

The normal distribution has two parameters, the mean µ and the variance σ2.
Problem 3.6
Problem 3.7 The parameter µ can take any value and determines the position of the peak. The

parameter σ2 takes only positive values and determines the width of the distribu-
tion. The normal distribution is defined as

Pr(x) =
1√

2πσ2
exp

[
−0.5(x− µ)2/σ2

]
, (3.11)

and we will abbreviate this by writing

Pr(x) = Normx[µ, σ2]. (3.12)

3.6 Normal-scaled inverse gamma distribution

The normal-scaled inverse gamma distribution (figure 3.6) is defined over a pair of
continuous values µ, σ2, the first of which can take any value and the second of
which is constrained to be positive. As such it can define a distribution over the
mean and variance parameters of the normal distribution.

The normal-scaled inverse gamma has four parameters α, β, γ, δ where α, β, and
Problem 3.8

γ are positive real numbers but δ can take any value. It has pdf:

Pr(µ, σ2) =

√
γ

σ
√

2π

βα

Γ[α]

(
1

σ2

)α+1

exp

[
−2β + γ(δ − µ)2

2σ2

]
, (3.13)

or for short

Pr(µ, σ2) = NormInvGamµ,σ2 [α, β, γ, δ]. (3.14)
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正規分布（normal distribution）に現れるパラメーター、平均（mean）µ と分散（variance）
σ2 に関する事前分布（prior）として、よく用いられる。
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Figure 3.6 The normal-scaled inverse gamma distribution defines a proba-
bility distribution over bivariate continuous values µ, σ2 where µ ∈ [−∞,∞]
and σ2 ∈ [0,∞]. a) Distribution with parameters [α, β, γ, δ] = [1, 1, 1, 0]. b)
Varying α. c) Varying β. d) Varying γ. e) Varying δ.

+

Figure 3.7 The multivariate normal
distribution models D-dimensional
variables x = [x1 . . . xD]T where each
dimension xd is continuous and real.
It is defined by a D×1 vector µ defin-
ing the mean of the distribution and a
D×D covariance matrix Σ which de-
termines the shape. The iso-contours
of the distribution are ellipsoids where
the center of the ellipsoid is deter-
mined by µ and the shape by Σ. This
figure depicts a bivariate distribution,
where the covariance is illustrated by
drawing one of these ellipsoids.

3.7 Multivariate normal distribution

The multivariate normal or Gaussian distribution models D-dimensional variables
x where each of the D elements x1 . . . xD is continuous and lies in the range
[−∞,+∞] (figure 3.7). As such the univariate normal distribution is a special case
of the multivariate normal where the number of elements D is one. In machine
vision the multivariate normal might model the joint distribution of the intensities
of D pixels within a region of the image. The state of the world might also be de-
scribed by this distribution. For example, the multivariate normal might describe
the joint uncertainty in the 3D position (x, y, z) of an object in the scene.

The multivariate normal distribution has two parameters: the mean µ and
covariance Σ. The mean µ is a D × 1 vector that describes the mean of the
distribution. The covariance Σ is a symmetric D × D positive definite matrix so
that zTΣz is positive for any real vector z. The probability density function has
the following form
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Γ[z + 1] = zΓ[z].

Problem 3.6 Consider a restricted family of univariate normal distributions where the
variance is always 1, so that

Pr(x|µ) =
1√
2π

exp
[
−0.5(x− µ)2] .

Show that a normal distribution over the parameter µ

Pr(µ) = Normµ[µp, σ
2
p]

has a conjugate relationship to the restricted normal distribution.

Problem 3.7 For the univariate normal distribution, find the functions a[x],b[θ], c[x] and
d[θ] that allow it to be represented in the generalized form of the exponential family (see
problem 3.4).

Problem 3.8 Calculate an expression for the mode (position of the peak in µ, σ2 space)
of the normal scaled inverse gamma distribution in terms of the parameters α, β, γ, δ.

Problem 3.9 Show that the more general form of the conjugate relation in which we
multiply I Bernoulli distributions by the conjugate beta prior is given by

I∏
i=1

Bernxi [λ] · Betaλ[α, β] = κ · Betaλ[α̃, β̃],

where

κ =
Γ[α+ β]Γ[α+

∑
xi]Γ[β +

∑
(1− xi)]

Γ[α+ β + I]Γ[α]Γ[β]

α̃ = α+
∑

xi

β̃ = β +
∑

(1− xi).

Problem 3.10 Prove the conjugate relation

I∏
i=1

Catxi [λ1...K ] ·Dirλ1...K [α1...K ] = κ ·Dirλ1...K [α̃1...K ],

where

κ̃ =
Γ[
∑K
j=1 αj ]

Γ[I +
∑K
j=1 αj ]

.

∏K
j=1 Γ[αj +Nj ]∏K

j=1 Γ[αj ]

α̃1...K = [α1 +N1, α2 +N2, . . . , αK +NK ].

and Nk is the total number of times that the variable took the value k.

Copyright c©2011,2012 by Simon Prince; published by Cambridge University Press 2012.
For personal use only, not for distribution.

– 2 –



NormInvGamµ,σ2 [α, β, γ, δ]

=
√

γ

σ
√

2π

βα

Γ(α)

( 1
σ2

)α+1
exp
[

−2β + γ(δ − µ)2

2σ2

]
,

=
√

γ

2πσ2 exp
[

−γ(δ − µ)2

2σ2

]
βα

Γ(α)

( 1
σ2

)α+1
exp
[
− β

σ2

]
.

　
　　　　　 Norm　　　　 　　　　　 InvGam 　　　

∫ ∞

−∞
dµ NormInvGamµ,σ2 [α, β, γ, δ]

= 1√
π

∫ ∞

−∞
e−x2

dx

[
βα

Γ(α)

( 1
σ2

)α+1
e−β/σ2

]
, where x ≡

√
γ

2σ2 (µ − δ)

= 1
Γ(α)

(
β

σ2

)α+1
e−β/σ2 1

β
,

≡ InvGamσ2 [α, β].
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∫ ∞

0
dσ2

∫ ∞

−∞
dµ NormInvGamµ,σ2 [α, β, γ, δ]

=
∫ ∞

0
InvGamσ2 [α, β] dσ2,

=
∫

InvGamσ2 [α, β]
∣∣∣∣dσ2

dλ

∣∣∣∣ dλ.

λ = 1/σ2 (precision)に選ぶと、

InvGamσ2 [α, β]
∣∣∣∣dσ2

dλ

∣∣∣∣ = 1
Γ(α) (βλ)α−1e−βλβ,

≡ Gam(λ|α, β) (after Bishop).

∫ ∞

0
dσ2

∫ ∞

−∞
dµ NormInvGamµ,σ2 [α, β, γ, δ] =

∫ ∞

0
Gam(λ|α, β) dλ,　　　　

= 1
Γ(α)

∫ ∞

0
Xα−1e−XdX, (where X ≡ βλ)

= 1
Γ(α)Γ(α),

= 1.
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Summary:

NormInvGamµ,σ2 [α, β, γ, δ]

=
√

γ

σ
√

2π

βα

Γ(α)

( 1
σ2

)α+1
exp
[

−2β + γ(δ − µ)2

2σ2

]
,

=
√

γ

2πσ2 exp
[

−γ(δ − µ)2

2σ2

]
βα

Γ(α)

( 1
σ2

)α+1
exp
[
− β

σ2

]
.

　
　　　　　 Norm　　　　 　　　　　 InvGam 　　　

Transformation: (µ, σ2) → (x, X),

where x =
√

γ

2σ2 (µ − δ),

X = β

σ2 .

Then
∣∣∣∣ ∂(x X)
∂(µ σ2)

∣∣∣∣ = ∂x

∂µ

∣∣∣ dX

dσ2

∣∣∣ =
√

γ

2σ2
X2

β
.
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NormInvGamµ,σ2 [α, β, γ, δ] = 1√
π

e−x2 1
Γ(α)Xα−1e−X

∣∣∣∣ ∂(x X)
∂(µ σ2)

∣∣∣∣ .
∫ ∞

0
dσ2

∫ ∞

−∞
dµ NormInvGamµ,σ2 [α, β, γ, δ]

=
∫ ∫

1√
π

e−x2 1
Γ(α)Xα−1e−X

∣∣∣∣ ∂(x X)
∂(µ σ2)

∣∣∣∣ dµdσ2,

=
∫ ∫

1√
π

e−x2 1
Γ(α)Xα−1e−XdxdX,

= 1√
π

∫ ∞

−∞
e−x2

dx
1

Γ(α)

∫ ∞

0
Xα−1e−XdX,

= 1√
π

√
π

1
Γ(α)Γ(α),

= 1.
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Return to

46 3 Common probability distributions

Γ[z + 1] = zΓ[z].

Problem 3.6 Consider a restricted family of univariate normal distributions where the
variance is always 1, so that

Pr(x|µ) =
1√
2π

exp
[
−0.5(x− µ)2] .

Show that a normal distribution over the parameter µ

Pr(µ) = Normµ[µp, σ
2
p]

has a conjugate relationship to the restricted normal distribution.

Problem 3.7 For the univariate normal distribution, find the functions a[x],b[θ], c[x] and
d[θ] that allow it to be represented in the generalized form of the exponential family (see
problem 3.4).

Problem 3.8 Calculate an expression for the mode (position of the peak in µ, σ2 space)
of the normal scaled inverse gamma distribution in terms of the parameters α, β, γ, δ.

Problem 3.9 Show that the more general form of the conjugate relation in which we
multiply I Bernoulli distributions by the conjugate beta prior is given by

I∏
i=1

Bernxi [λ] · Betaλ[α, β] = κ · Betaλ[α̃, β̃],

where

κ =
Γ[α+ β]Γ[α+

∑
xi]Γ[β +

∑
(1− xi)]

Γ[α+ β + I]Γ[α]Γ[β]

α̃ = α+
∑

xi

β̃ = β +
∑

(1− xi).

Problem 3.10 Prove the conjugate relation

I∏
i=1

Catxi [λ1...K ] ·Dirλ1...K [α1...K ] = κ ·Dirλ1...K [α̃1...K ],

where

κ̃ =
Γ[
∑K
j=1 αj ]

Γ[I +
∑K
j=1 αj ]

.

∏K
j=1 Γ[αj +Nj ]∏K

j=1 Γ[αj ]

α̃1...K = [α1 +N1, α2 +N2, . . . , αK +NK ].

and Nk is the total number of times that the variable took the value k.
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NormInvGamµ,σ2 [α,β, γ, δ] ∝
( 1

σ2

)α+3/2
exp
[

−2β + γ(δ − µ)2

2σ2

]
.

ln (NormInvGam) = −
(

α + 3
2

)
ln σ2 − 2β + γ(δ − µ)2

2σ2

+ constant.
∂ NormInvGam

∂µ
= γ(δ − µ)

σ2 NormInvGam,

= 0,

∴ µ = δ. (a)

∂ NormInvGam
∂σ2 =

[
−
(

α + 3
2

) 1
σ2 + 2β + γ(δ − µ)2

2σ4

]
NIG,
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= 1
2σ4

[
2β + γ(δ − µ)2 − (2α + 3)σ2] NIG,

= 0,

∴ σ2 = 2β + γ(δ − µ)2

2α + 3 . (b)

From Eqs. (a) and (b),
(µ, σ2) =

(
δ,

2β

2α + 3

)
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Figure 3.6 The normal-scaled inverse gamma distribution defines a proba-
bility distribution over bivariate continuous values µ, σ2 where µ ∈ [−∞,∞]
and σ2 ∈ [0,∞]. a) Distribution with parameters [α, β, γ, δ] = [1, 1, 1, 0]. b)
Varying α. c) Varying β. d) Varying γ. e) Varying δ.
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Figure 3.7 The multivariate normal
distribution models D-dimensional
variables x = [x1 . . . xD]T where each
dimension xd is continuous and real.
It is defined by a D×1 vector µ defin-
ing the mean of the distribution and a
D×D covariance matrix Σ which de-
termines the shape. The iso-contours
of the distribution are ellipsoids where
the center of the ellipsoid is deter-
mined by µ and the shape by Σ. This
figure depicts a bivariate distribution,
where the covariance is illustrated by
drawing one of these ellipsoids.

3.7 Multivariate normal distribution

The multivariate normal or Gaussian distribution models D-dimensional variables
x where each of the D elements x1 . . . xD is continuous and lies in the range
[−∞,+∞] (figure 3.7). As such the univariate normal distribution is a special case
of the multivariate normal where the number of elements D is one. In machine
vision the multivariate normal might model the joint distribution of the intensities
of D pixels within a region of the image. The state of the world might also be de-
scribed by this distribution. For example, the multivariate normal might describe
the joint uncertainty in the 3D position (x, y, z) of an object in the scene.

The multivariate normal distribution has two parameters: the mean µ and
covariance Σ. The mean µ is a D × 1 vector that describes the mean of the
distribution. The covariance Σ is a symmetric D × D positive definite matrix so
that zTΣz is positive for any real vector z. The probability density function has
the following form
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